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1 Introduction

This document provides additional details about EvAM-Tools and the methods included in it.
Another file, evamtools examples.pdf, from https://rdiaz02.github.io/EvAM-Tools/

pdfs/evamtools_examples.pdf, includes commented examples, with both real and simu-
lated data, that illustrate the use and utility of EvAM-Tools.

You can run the web app from https://iib.uam.es/evamtools/ or download a Docker
image from https://hub.docker.com/r/rdiaz02/evamshiny; to run the R package down-
load a Docker image from https://hub.docker.com/r/rdiaz02/evamrstudio.

2 Cancer Progression Models included in EvAM-Tool: details

2.1 Cancer Progression Models and cross-sectional data: overview and
type of input data

In cross-sectional data a single sample is obtained from each subject or patient. That sin-
gle sample represents the ”observed genotype” of, for example, the tumor of that patient.
Genotype can refer to single point mutations, insertions, deletions, or any other genetic mod-
ification; in fact, these models have been used to analyze point mutations, gains and losses of
CGH regions, SNP alterations, pathway alteration data, etc: the granularity of the data and
level of analysis depend on the question addressed, and is not inherent to the models. As is
often done by Cancer Progression Models (CPM) software, we think of the cross-sectional data
as being stored in a matrix, where rows are patients or subjects, and columns are genes/CGH
regions/SNPs/pathways/etc; the data is a 1 if the event (or alteration or mutation) was
observed and 0 if it was not.

We have used expressions such as ”genotype”, ”mutation” and other genetic- and genomic-
related terms, but nothing prevents CPMs from being used with non-genetic, non-genomic
data, and thus our preference for the expression ”event accumulation models”. The key
features that the data must have to be properly analyzed with these methods are: a) that
events or alterations are (or can be reasonably assumed to be) gained one by one; b) that
once gained, they are not lost (e.g., there is no back mutation); c) that we can consider the
different individuals/patients in the cross-sectional data as replicate evolutionary experiments
or runs where all individuals are under the same constraints (e.g., genetic constraints if we are
dealing with mutations); see further details below (section 2.2, “Cancer Progression Models
(CPMs): assumptions”).

Cancer progression models (CPMs) or, more generally, event accumulation models, use
these cross-sectional data to try to infer restrictions in the order of the irreversible accumu-
lation of discrete events; for example, that a mutation on gene B is always preceded by a
mutation in gene A (maybe because mutating B when A is not mutated results in a lethal
state for that cell). Inferring restrictions, in the sense just explained (B only if A), is what
CBN, OT, OncoBN, and H-ESBCN do. Other cancer progression models, such as MHN, in-
stead of modeling deterministic restrictions, model promoting/inhibiting interactions between
genes, for example that having a mutation in gene A makes it very likely to gain a mutation
in gene B.

2.2 Cancer Progression Models (CPMs): assumptions

CPMs model the irreversible accumulation of discrete events. They assume that the obser-
vations in the cross-sectional data set are independent realizations of evolutionary processes
where the same constraints hold for all tumors; therefore, a cross-sectional data set is con-
sidered a set of replicate evolutionary experiments where all individuals are under the same
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(genetic) constraints (Gerstung et al., 2011; Beerenwinkel et al., 2015, 2016; Diaz-Uriarte and
Vasallo, 2019). The objective of CPMs is to infer these constraints. CPMs assume that events
are gained one by one (no simultaneous acquisition of events) and that there is no back mu-
tation so that once gained an event is not lost; CPMs also assume that the events that drive
the process (driver genes if we are thinking about cancer) are known and present in the data
set. Finally, CPMs assume that all subjects start the evolutionary process without any of
the studied events (i.e., all subjects start the process with 0s in the matrix of subjects by
alterations). If we think about cancer, this means that “CPMs assume that all tumors start
cancer progression without any of the mutations considered in the study (the above matrix
of subjects by driver alterations), but other mutations could be present that have caused the
initial tumor growth” (Diaz-Uriarte and Vasallo, 2019); these other additional mutations that
lead to the initiation of the process are absorbed in the root node from which cancer starts
(Attolini et al., 2010).

2.3 Cancer Progression Models (CPMs): details

2.3.1 Oncogenetic Trees (OT)

OTs are among the earliest formal models of accumulation of mutations in cancer. They were
originally described in Desper et al. (1999) (see also Simon et al., 2000; Radmacher et al.,
2001); additional references include Szabo and Boucher (2008); Szabo and Pappas (2022);
Szabo and Boucher (2002). With OTs, restrictions in the accumulation of mutations (or
events) are represented as a tree1. Hence, a parent node can have many children, but children
have a single parent: therefore, an event can only directly depend on another event. As for
all CPMs that use DAGs and trees, an edge from gene i to gene j means that a mutation in i
must occur before a mutation in j can occur; an edge (or arrow from i to j) indicates a direct
dependency of a mutation in gene j on a mutation in gene i.

OTs are untimed models (in contrast to, for example CBN, explained in section 2.3.3):
weights along edges (the πxy we will use below) can be directly interpreted as probabilities
of transition along the edges by the time of observation (Szabo and Boucher, 2008, p. 5). In
other words, edge weights represent conditional probabilities of observing a given mutation,
when the sample is taken, given the parents are observed.

As explained in (Szabo and Boucher, 2008, Definition 1, p. 4): “A pure untimed oncoge-
netic tree is a tree T with a probability π(e) attached to each edge e. This tree generates
observations on mutation presence/absence the following way: each edge e is independently
retained with probability π(e); the set of vertices that are still reachable from M0 [the root
of the tree, representing no alterations] gives the set of the observed genetic alterations.”

To give an example, suppose a tree as follows:

1A tree is a Directed Acyclic Graph (DAG) where a child node can have only only one parent. Thus, trees
are DAGs, but not all DAGs are trees.
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.

In this tree, events (mutations) A and B can be acquired independently, and depend on no
one (Root is M0 in the notation of Szabo and Boucher, 2008). C and D depend on A (and are
independent of each other, conditional on A). The parameters of the model, shown in brown,
are:

• Probability of acquiring A, π0A = 0.4; π0A is the notation in Szabo and Boucher, 2008,
and is the weight along the edge from M0 (Root) to A.

• Probability of acquiring B, π0B = 0.7.

• Probability of acquiring C, given A has already been acquired, πAC = 0.3 (again, πAC

is the weight along the edge from A to C).

• Probability of acquiring D, given A has already been acquired, πAD = 0.2.

According to the above model, the tumor develops as follows: starting from Root (or M0),
the tumor can gain A and B, and these are independent events. If A is gained, then the tumor
can gain C and D, and these two are again independent events (once A has been gained).
Therefore, the probabilities of the different genotypes or states of the tumor at the time of
sampling are:

• Only Root or M0, i.e., no events gained (i.e., only genotypes without any mutation, or
“WT”): (1− π0A)(1− π0B).

• Only A occurs (i.e., genotype A): π0A(1− π0B)(1− πAC)(1− πAD).

• Only B occures (i.e., we observe genotype B): π0B(1− π0A).

• Both A and B (but no C or D), genotype AB: π0Aπ0B(1− πAC)(1− πAD).

• A and C, genotype AC: π0A(1− π0B)πAC(1− πAD).

• Both B and C but no A, genotype BC: 0 (as A needs to occur before C can occur).

• . . .

The above describes the ideal scenario, without errors. OT includes a model for errors
from different sources: deviations from the model (i.e., events that do not respect the pure
untimed model above) and observational (e.g., genotyping) errors. Together, these two types
of error cause false positive and false negative observational errors (ϵ+, ϵ−). These error rates
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are estimated by the OT algorithm and are incorporated in the computation of the predicted
frequencies of genotypes according to OT (see details in “CPMs: Error models”, section
2.3.6).

When using OT, as explained in Szabo and Boucher (2008, p. 5), the main objective is
reconstructing the topology of the tree; the estimation of the edge probabilities (the weights
or πxy) and the error rates (ϵ+, ϵ−) is of secondary importance. As detailed in Szabo and
Boucher (2008, p. 5), the estimation of the topology uses an “(...) algorithm [that] takes
a greedy bottom-up approach: it assigns the parent of each node by finding the maximum-
weight in-edge starting from the leaves.” and that provides a computationally fast way of
inferring the tree. The full algorithm for topology reconstruction is provided in Szabo and
Boucher (2008, Section 3 and Fig. 2) (the algorithm is also provided in Figure 2 of file ot.pdf,
part of the documentation of Szabo and Pappas, 2022); estimation of the weights is detailed
in Szabo and Boucher (2008, p. 13). Sufficient conditions for the reconstruction of the true
tree when there are false positive and false negative errors are given in Szabo and Boucher
(2002) and sample size requirements in Szabo and Boucher (2008, p. 8)(see also Desper et al.,
1999).

2.3.2 OncoBN

OncoBN, described in Nicol et al. (2021), is similar to OT in the sense of being an untimed
oncogenetic model but, in contrast to OT, a node can have multiple parents (again, as for all
CPMs that use DAGs and trees, an edge from gene i to gene j means that a mutation in i
must occur before a mutation in j can occur; an edge —or arrow from i to j— indicates a
direct dependency of a mutation in gene j on a mutation in gene i). When there are multiple
parents the relationships and models can be of two different kinds:

• disjunctive (OR relationship): the DBN, Disjunctive Bayesian Network model;

• conjunctive (AND relationship): the CBN, Conjunctive Bayesian Network model.

A given OncoBN be either a DBN or a CBN, but not both: it can have conjunctive or
disjunctive relationships, but not both. (And note that the CBN models fitted by OncoBN
are untimed, and thus the parameters do not have the same interpretation as the parameters
of the CBN models discussed below, “Conjuntive Bayesian Networks (CBN)”, section 2.3.3).

As explained in Nicol et al. (2021, p. 2), a key difference between the conjunctive (AND)
and the disjunctive (OR) model is that under the conjunctive model all parent alterations that
constitute the AND relationship must be present in a cell for the child mutation to occur; the
disjunctive model, in contrast, allows child event to occur when just one of the parent events
has taken place. According to the authors, this might make the model better for modeling
intra-tumor heterogeneity.

The following DAG shows a conjunctive model fitted with OncoBN:
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.

Note that the value of 0.3 is the value of the parameter θC : this is the conditional prob-
ability of C given its ancestors. (So, in contrast to OT, but similar to CBN and H-ESBCN,
the parameters are not of edges, but of events). The values of θ are: θA = 0.8, θB = 0.4,
θC = 0.3. According to the OncoBN model the probabilities of the different genotypes are:

• Only Root (i.e., only genotypes without any mutation, or “WT”): (1− θA)(1− θB).

• Only A, i.e., genotype A: θA(1− θB).

• A and C, genotype AC: 0, since acquiring C requires also B.

• A and B (but not C), genotype AB: θAθB(1− θC).

• All of A, B, C, genotype ABC: θAθBθC .

• Only C: 0, since neither A nor B have occurred.

• . . .

The next DAG is identical, except the model is a disjunctive one (notice the edges are OR
edges):

.

Now, θC is the probability of C occurring if at least one of its ancestors has occurred.
Therefore, we have the following probabilities of genotypes, where those that differ from the
conjunctive case have been marked in bold with an initial asterisk:

• Only Root (i.e., only genotypes without any mutation, or “WT”) : (1− θA)(1− θB).
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• * Only A: θA(1− θB)(1− θC).

• * A and C, genotype AC: θA(1− θB)θC .

• A and B (but not C), genotype AB: θAθB(1− θC).

• All of A, B, C, genotype ABC: θAθBθC .

• Only C: 0, since neither A nor B have occurred.

The above represent the probabilities in a model without errors. OncoBN includes an
error model, the “spontaneous activation model”, where there is a non-zero probability of
observing child events when restrictions in the DAG are not satisfied. The rate of spontaneous
activation is part of the estimation procedure, and is included in the computed probabilities
of the different genotypes (see details in section 2.3.6, “CPMs: Error models”). For example,
under the disjunctive model above, the probability of observing genotype C would be (1 −
θA)(1 − θB)ϵ, where ϵ is the spontaneous activation probability, which is set as the same for
all events (Nicol et al., 2021, p. 5). (Figure 1 of Nicol et al., 2021 provides another example
of the role of ϵ in computing predicted probabilities)2.

For structure and model parameter learning (Nicol et al., 2021, p. 5)), and to avoid overfit-
ting and increase interpretability of the models, the authors use as the score the Bayesian Infor-
mation Criterion (BIC), so the log-likelihood is penalized by the number of edges (log(N)|E|,
where |E| the number of edges); in addition, the search space is restricted to DAGs with an
in-degree bound that, by default, is set to 3 (this option can be changed in EvAM-Tools;
in the web app, under “Advanced options”, “OncoBN options”, “k: In-degree bound of the
estimated network”). Finally, for disjunctive models, there is an additional step of removing
low confidence edges that are likely to be spurious.

To search for the best graph (the model with the best BIC) the authors provide two
algorithms: an exact procedure that uses dynamic programming and an approximate structure
learning algorithm that uses genetic programming (Nicol et al., 2021, p. 5)). The authors
recommend the dynamic programming procedure for less than 30 events, and the genetic
algorithm for larger problems. (By default, EvAM-Tools uses the dynamic programming
algorithm; this can be changed, for example in the web app, under “Advanced options”,
“OncoBN options”, “Algorithm”).

2.3.3 Conjuntive Bayesian Networks (CBN)

In terms of the representation of the restrictions, CBN, like OncoBN, generalizes the tree-
based restriction of OT to a directed acyclic graph (DAG): a node can have multiple parents.
A node with multiple parents means that all of the parents have to be present (all of the
parent events must have occurred) for the children to appear; therefore, relationships are
conjuntive —AND relationships between the parents (recall OncoBN can model AND and
OR relationships). CBN also differs from OT and OncoBN because the CBN model is a timed
model: the λs, the parameters of the models, are the rates of the exponentially distributed
times to fixation of an event given that all parents of that event have been observed (i.e., given
that the event restrictions, as specified in the DAG, are satisfied: Montazeri et al., 2016, p.
i729; Gerstung et al., 2009, section 2.2).

Specifically, Ti, the waiting time for event i to occur, is an exponentially distributed
random variable with parameter λi conditioned on all the parent mutations, pa(i), having

2Actually, the supplementary material of the OncoBN paper describes also an observational error model,
where it is said, in p. 3, ”Assuming ξ+ and ξ− are fixed and known”; notice the “known”. Moreover, as far
as I can tell, the code makes no provision for it, nor does it return any estimate. Thus, this is why I do not
mention this observational error model in the main text.
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occurred (Gerstung et al., 2009); thus, Ti is defined recursively as (Gerstung et al., 2009;
Hosseini et al., 2019):

Ti ∼ Exp(λi) + max
j∈pa(i)

Tj (1)

To give an example, suppose a DAG as follows:

.

Then, the time to fixation of the three mutations (not genotypes) are:

• TA ∼ Exp(λA)

• TB ∼ Exp(λB)

• TC ∼ Exp(λC) + max(TA, TB)

and we will not observe C unless both A and B have occurred.
The λ parameters of the CBN model define the transition rate matrix between genotypes

(see also Montazeri et al., 2016). For the example above we have:

• Rate from WT to genotype with A mutated: λA.

• Rate from WT to genotype with B mutated: λB.

• Rate from genotype with A mutated to genotype with both A and B mutated: λB.

• Rate from genotype with B mutated to genotype with both A and B mutated: λA.

• Rate from genotype with A and B mutated to genotype with A, B, C mutated: λC .

In other words, this is the transition rate matrix, where only genotypes that can appear
are shown (i.e., genotypes C, AC, and BC are not shown):

Q =



WT A B AB ABC

WT −(λA + λB) λA λB 0 0
A 0 −λB 0 λB 0
B 0 0 −λA λB 0
AB 0 0 0 −λC λC

ABC 0 0 0 0 0

 (2)

For parameter estimation, and since the observation times of the different individuals are
unknown, it is assumed that observation time is exponentially distributed with parameter 1
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(the probabilities of observing the different events are invariant under rescalings of the λi and
the λs, the rate of the time to observation — Gerstung et al., 2009).

In EvAM-Tools we include two versions of CBN that differ in the algorithm (and, thus,
in speed and in how many observations can be analyzed) and in the error model: H-CBN,
described in Gerstung et al. (2009, 2011), and MC-CBN, described in Montazeri et al. (2016).
Unless qualified otherwise (i.e., saying MC-CBN), when we say “CBN” we refer to H-CBN.
By default, MC-CBN is not selected as a method to be used in the web app because it is
often much slower than any of the remaining methods; but H-CBN, although faster, can only
handle, at most, 14 events whereas MC-CBN can handle hundreds of events.

H-CBN uses simulated annealing with a nested expectation-maximization (EM) algorithm
for estimation: structure —DAG— learning is conducted with simulated annealing and pa-
rameters (λs and ϵ —the error term; see next) are estimated using the EM algorithm (section
2.3, pp. 2810–2811 of Gerstung et al., 2009). As is the case for most other methods, the key fo-
cus of the algorithm is inferring the DAG of restrictions (the poset); the selected DAG (poset)
is the maximum likelihood one “(...) without additional model selection criterion such as the
Akaike or Bayesian information criterion (AIC and BIC, respectively)” (Gerstung et al., 2009,
p. 2811). Briefly, the algorithm first finds the maximum likelihood estimates for λs and ϵ of a
given poset; a new poset is then generated from the previous one (after addition/removal of
relations from the poset), the maximum likelihood estimates of λs and ϵ computed for this new
poset, and the new poset is accepted if its likelihood is larger or, if smaller, it is accepted with
a probability that is a function the difference in likelihoods divided by the temperature (recall
they use a simulated annealing algorithm). MC-CBN uses a Monte-Carlo EM algorithm (see
Montazeri et al., 2016, p. i731 for network —DAG— learning and p. i730 and Algorithm 1 in
p. i731 for parameter estimation).

H-CBN and MC-CBN also differ in their error models. In H-CBN the λs describe the
true underlying model that produces the true, hidden genotypes, but the observed genotypes
might differ from the true ones because of observation error; the observation error is a Bernoulli
process, in which a mutation is falsely observed with probability ϵ, which is assumed to be the
same and independent across all sites (see also Sakoparnig and Beerenwinkel, 2012, p. 2319).
In MC-CBN the model is a mixture between the CBN model and a noise component model,
such as the independence model provided by a DAG where all mutations are direct descendants
of the root (the empty poset; see details in Montazeri et al., 2016, p. i731). The error models
are, of course, part of the fitting algorithm.

2.3.4 Hidden Extended Suppes-Bayes Causal Networks (H-ESBCN)

H-ESBCN (Hidden Extended Suppes-Bayes Causal Networks), described in Angaroni et al.
(2021) (and used by its authors as part of Progression Models of Cancer Evolution, PMCE),
is similar to CBN in that it is a timed model, where the parameters of the model, the λs, are
the rates of the exponentially distributed times to fixation of an event given that the parents
of that event have been observed. In contrast to CBN, the dependency relationships are not
limited to AND, and they can include OR and XOR. In contrast to OncoBN with respect
to dependencies, H-ESBCN adds XOR relationships, but H-ESBCN allows the very same
model to include AND, OR, and XOR relationships; the fitting algorithm includes automatic
inference of logical formulas for these three different patterns, AND, OR, XOR.

To give an example, suppose the following DAG (we only show XOR and OR relationships,
since we have already shown AND relationships in examples above, and there is nothing new
with AND relationships); this example is discused, in another context, in “An example with
OR and XOR” (section 7.4):
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.

According to this DAG

• A, B, C depend on none, and their rates are, respectively, λA, λB, λC .

• D depends, with an OR, on both A and B: the rate of fixation of D given at least one
of A or B have occurred is λD. Thus, we can observe genotypes AD, BD, ABD.

• E depends, with an XOR, on B and C: the rate of occurrence of E given exactly one
of B XOR C has occurred is λE . Thus, E can only be observed in genotypes that show
B XOR C, such as genotypes BE, CE, ABE, ACE; genotypes BCE or ABCE, in
contrast, are not allowed because those genotypes have both B and C mutated.

The transition rate matrix between the genotypes that are possible under the model is
shown below, where rows are origin, column destination (i.e., entries of Qxy are the transition
rates from x to y):
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Note that it is possible to have two (or more) parents to have dependents with different
relationships. This, for example, is one of the pre-loaded DAGs in EvAM-Tools:

.

The error model is similar to the one of CBN “Conjuntive Bayesian Networks (CBN)”
(section 2.3.3), as described in Gerstung et al. (2009); Sakoparnig and Beerenwinkel (2012);
see also “CPMs: Error models” (section 2.3.6). The fitting algorithm is described in Angaroni
et al. (2021, Sections 2.1, 2.2, pp. 756 and 757). As for other methods, its main focus
is inferring the structure of the DAG, in this case the maximum a posteriori one in the
framework of Suppe’s probabilistic causation. A key feature of the algorithm is the attempt
to automatically detect the correct logical formula (AND, OR, XOR) for the dependency.
The structure searching algorithm uses MCMC from a randomly initialized structure which is
modified according to eight different possible moves (Angaroni et al., 2021, p. 756). To avoid
fitting unneeded logic formulas, the structure learning algorithm includes regularization, which
can be chosen by the user to be AIC or BIC. Estimation of the λs (and error rate) for a fixed
DAG structure is then done using an EM algorithm (Angaroni et al., 2021, p.757).

2.3.5 Mutual Hazard networks (MHN)

All of the methods described above share a model of deterministic dependencies for the accu-
mulation of events (or mutations) (Schill et al., 2020): an event (a mutation) can only occur
if its dependencies are satisfied (though note that both OT and OncoBN, as well as MB-CBN
allow for error deviations from this requirement — see “CPMs: Error models”, section 2.3.6).

In contrast to the previous methods, with MHN (Schill et al., 2020) dependencies are
not deterministic and events can make other events more likely (promoting influence) or less
likely (inhibiting influence). The rate of occurrence of events is modeled by a spontaneous
rate of fixation and a multiplicative effect that each of these events can have on other events
via pairwise interactions; these pairwise interactions are what allow MHN to model both
promoting and inhibiting dependencies.

In more detail, the Markov process that governs the transition from a genotype x to a
genotype with mutation i added to genotype x is specified by (Schill et al., 2020, eq. 2):

Qx+i,x = Θii

∏
xj=1

Θij (3)

where xj is 1 if gene j is already mutated in genotype x, and Qy,x is the transition rate from
x to y (we are using the notation in Schill et al., 2020, where transition rate matrices are
transposed relative to the notation in Montazeri et al., 2016 that we have used when
describing CBN and H-ESBCN). Θii is the baseline hazard or the rate of i before any other
events; Θij is the multiplicative effect of event j on the rate of event i. Therefore, equation 3
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shows the transition rate as the product of the baseline hazard times the multiplicative
effects of all the other mutated genes or events, j, on i.
To give a specific example, suppose the Θ matrix for a three-gene model3 is:

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

 (4)

The following are the transition rates for some transitions:

• From WT to the genotype with the first event or gene: Θ11.

• From the genotype with the first event to the genotype with the first and the second
events: Θ22Θ21.

• From the genotype with the first event and second events to the genotype with the
third event: Θ33(Θ31Θ32).

Note that in EvAM-Tools we show the log-Θ matrix, the matrix of θij , where Θij = eθij ,
because this makes it immediate to identify the inhibiting relationships as those with a
negative sign, and it symmetrizes the effects around 0.
As can be seen, the relationships between events are inhibiting (event j inhibits event i if
Θij < 1 or, equivalently, θij < 0) or promoting (Θij > 1 or, equivalently, θij > 0), but there
are no deterministic restrictions (although MHN can be seen as a stochastic approximation
to the deterministic dependencies of CBN: see the supplementary material of Schill et al.,
2020).
To fit the model, because observation time is unknown, and as is done by Gerstung et al.
(2009), the authors assume that observation times are exponentially distributed with
parameter 1. To prevent overfitting, the model fitting procedure maximizes the likelihood of
the data minus an L1 penalty to try to avoid many interacting events (i.e., to promote
sparsity of the fitted models): it uses a tunning parameter, λ4 that multiplies the sum of the
absolute values of the off-diagonal entries of the log Θ matrix (Schill et al., 2020, eq. 6). The
default value of λ is 1/number of rows of the data set. The authors provide an efficient
implementation of their method that uses a Quasi-Newton algorithm. There is no explicit
error model for MHN.

2.3.6 CPMs: Error models

We have mentioned error models when describing each procedure. We put together those
details here, to allow for easier understanding of the similarities and differences between
methods. (Methods are not ordered as above but, rather, by increasing complexity of the
error model).

MHN There is no explicit error model (the simulation process described in p. 244 of Schill
et al., 2020 uses a scheme as the one in CBN, Gerstung et al., 2009, explained below,
but that is not part of the MHN model itself).

CBN In H-CBN the λs describe the true underlying model that produces the true, hidden
genotypes, but the observed genotypes might differ from the true ones because of
observation error, for instance genotyping error (Gerstung et al., 2009, p. 2810). The
observation error is a Bernoulli process, in which a mutation is falsely observed with
probability ϵ, which is assumed to be the same and independent across all sites (see

3As a different example, see the set of transitions for a four-gene example in Schill et al., 2020, Fig. 2.
4This λ is different from the λs of CBN and H-ESBCN
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also Sakoparnig and Beerenwinkel, 2012, p. 2319); in other words, for all events of all
subjects in the sample, if the true observation is a 0, it has a probability of being
observed as a 1 of ϵ, and similarly for an observation that is truly a 0.

H-ESBCN As for CBN (Angaroni et al., 2021, p. 756).

MC-CBN With MC-CBN the model is a mixture between the CBN model and a noise
component model, such as the independence model provided by a DAG where all
mutations are direct descendants of the root (the empty poset; see details in Montazeri
et al., 2016, p. i730-i731). The simulations in https://github.com/cbg-ethz/MC-CBN,
however, use a procedure where observations are generated from an underlying poset
with a given set of lambdas, and symmetric error is then added (see the functions
mccbn:::random poset and mccbn:::random posets), as for CBN above.

OncoBN The model includes a DBN (disjunctive) or CBN (conjunctive) model, as given
by a DAG and a set of θs, and a “spontaneous activation model” (Nicol et al., 2021,
p. 3-4). The “spontaneous activation model”, with parameter ϵ, represents deviations
from the model and allows child mutations to appear even if the parents in the DAG
have not been mutated (i.e., even if the restrictions encoded in the DAG are not
satisfied). This ϵ, therefore, has a different meaning from the ϵ of CBN and H-ESBCN.

OT There are two sources of deviations from the OT model: a) those that result from
observational (or genotyping) errors, that can lead to both false positive and false
negative observational errors; b) events occurring that do not respect the OT model
(Szabo and Boucher, 2002, 2008). The second source of errors would be the same as
the “spontaneous activation” in OncoBN.

The oncotree.fit function in the Oncotree package returns a eps component with
the estimated false positive, epos (ϵ+), and false negative, eneg (ϵ−), error rates. But
these are the result of combining the two sources of error (Szabo and Boucher, 2008):
observation errors and true deviations from the model. So observation error is
reflected in both eneg (ϵ−), and epos (ϵ+), whereas true deviations from the model are
only reflected in epos (ϵ+). In other words, the false negatives, as measured by the
estimated eneg, are due purely to observation error. But the epos are not equivalent
to the ϵ of OncoBN: epos includes both observation error (false positives) and true
mutations that occur without respecting the restrictions of the OT DAG (tree).

So, when obtaining predicted frequencies under the model, for CBN, H-ESBCN, and MHN,
we assume perfect compliance with the model; symmetric noise (e.g., genotyping noise) is
added only when obtaining finite samples from the model. For OT and OncoBN the
predicted frequencies from the model already include deviations from the “pure” model
(“pure model”: the model where the only possible genotypes are those that strictly respect
the DAG or tree).

2.3.7 CPMs: output

All methods provide directly, as output, estimates of the key constituents of their models, in
particular:

OT Tree of restrictions, edge weights (πs), errors (ϵ+, ϵ−).

OncoBN DAG of restrictions, event θ, spontaneous activation probability or error (ϵ).
(The type of model, conjunctive or disjunctive, is not estimated, but set by the user).
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CBN DAG of restrictions, λs, error rate.

H-ESBCN DAG of restrictions, including type of restriction (AND, OR, XOR), λs, error
rate.

MHN Θ matrix (or its equivalent θ or log-Θ matrices).

In addition, directly derived predictions, such as predicted probabilities of genotypes
are provided by the original code/implementation (e.g., for OT, OncoBN, MHN) or can be
obtained for CBN and H-ESBCN from the transition rate matrices (see details in “Predicted
genotype frequencies”, section 3). From the predicted probabilities of genotypes we can
obtain finite sampled genotype counts, as explained in “Error models and obtaining
finite samples (or sampled genotype counts)” (section 5.2).
Transition rate matrices themselves are not part of the immediate output of any of the
methods (except MHN5) but, as explained in “Predicted genotype frequencies” (section 3),
can be obtained from the DAG and the λs, as we do in EvAM-Tools; we have already seen
examples of the transition rate matrices for all of CBN (“Conjuntive Bayesian Networks
(CBN)”, section 2.3.3), H-ESBCN (“Hidden Extended Suppes-Bayes Causal Networks
(H-ESBCN)”, section 2.3.4), and MHN (“Mutual Hazard networks (MHN)”, section 2.3.5).
Transition probabilities can be computed from the transition rate matrices (for instance,
using competing exponentials). And from the transition probabilities we can compute
probabilities of evolutionary paths as the product of each transition along each possible
path (see references and details in “Probabilities of evolutionary paths and transition
probabilities”, section 4).
All of this output is available from EvAM-Tools, and the web app shows most of them using
both figures and tables. (Probabilities of evolutionary paths, even if asked to be computed,
are not explicitly available from the web app, as they can be unwieldy to display; they are
provided in the output one can download and are, of course, implicit from the transition
probabilities between genotypes, and transition probabilities are displayed in the web app.)

2.3.8 CPMs: summary

The following table provides a summary of the main features of each method.

5And we saw an example in “Mutual Hazard networks (MHN)” (section 2.3.5)
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Method Timed/
untimed

Number and type of de-
pendencies

Restrictions Representation and out-
put

OT Untimed Single Deterministic Tree with edge weights
(πs)

OncoBN Untimed AND (CBN version),
OR (DBN version); but
a given model can only
contain either AND xor
OR, not both

Deterministic DAG with event thetas
(θs)

CBN Timed AND Deterministic DAG with event rates
(λs)

H-ESBCN Timed AND, OR, XOR Deterministic DAG with event rates
(λs)

MHN Timed Promoting and inhibit-
ing (but only pairwise
interactions)

Stochastic
dependencies

Θ matrix (diagonal en-
tries: baseline haz-
ards; off-diagonal: mul-
tiplicative effects).

3 Predicted genotype frequencies

3.1 Predicted genotype frequencies for CBN, MCCBN, MHN, H-ESBCN

Briefly, for CBN, MCCBN, MHN, and H-ESBCN, the transition rate matrix describes the
true process that generates genotypes and this matrix can be obtained from the parameters
of the model (θs for MHN, λs for the rest); we haven seen examples for all these methods in
section “Cancer Progression Models (CPMs): details” (section 2.3). Therefore, we can use
the transition rate matrix to calculate the predicted probabilities of the different genotypes
using standard results from continuous-time Markov Chains. In all cases here, we assume
that the time of observation is exponentially distributed with rate 1 (as in Gerstung et al.,
2009 or Schill et al., 2020)6.
In more detail, obtaining the transition rate matrix from the model output is detailed in
Montazeri et al. (2016) for CBN, and Schill et al. (2020) for MHN; for H-ESBCN see section
7, “H-ESBCN: details and examples of using λs and computing transition rate matrices and
predicted genotype frequencies”.
Once we have obtained the transition rate matrix, the fastest way to obtain the predicted
genotype probabilities is using equation 4 in Schill et al. (2020):

p =

∫ ∞

0
dt e−t etQ p0 = [I −Q]−1p0 (5)

where p0 is the initial distribution (i.e., 1 for WT and 0 for the rest of the genotypes), t is
the time of observation (again, assumed to be exponentially distributed with parameter 1),
and Q is the transition rate matrix (beware: written here, as in Schill et al., 2020, with Qij

meaning the transition rate from j to i, in contrast to our expressions for transition rate
matrices in equation 2 or the transition rate matrix in section 2.3.4). This is implemented in

6There is code in evamtools, in function population sample from trm, to obtain samples at arbitrary
collections of times —i.e., not limited to times exponentially distributed with rate 1.
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the non-exported function probs from trm, and follows also what is done in the original
Generate.pTh function from Schill et al. (2020). probs from trm is called from function
evam.
Instead of using that expression, we can sample from the continuous-time Markov Chain
using standard procedures (e.g., ch. 5 in Wilkinson, 2019 or Algorithm 1 in Gotovos et al.,
2021). Sampling is what we do in EvAM-Tools when you call sample CPMs asking for
obs genotype transitions or state counts to be returned (and this sampling is
implemented in the non-exported function population sample from trm, and called, as
needed, by function sample CPMs).

3.2 Predicted genotype frequencies for OT and OncoBN

OT and OncoBN do not return rates of a continuous-time Markov chain, but probabilities of
seeing specific alterations at the time of observation. Predicted probabilities of genotypes for
OT and OncoBN are obtained using the weights (OT) or θs (OncoBN), according to the
expression for the probability of observing a genotype; these expressions incorporate, when
predicting the genotypes, the estimated errors (ϵ+, ϵ− for OT, ϵ for OncoBN; see section
“CPMs: Error models”, section 2.3.6). For example, see section 2.2 in Szabo and Boucher
(2008) for OT and Figure 1 and section 2.1 in Nicol et al. (2021) for OncoBN or section
“OncoBN” (section 2.3.2). For OT we can use function distributiion.oncotree in
package Oncotree and for OncoBN function Lik.genotype from package OncoBN7.

For all methods, once we have the predicted probabilities, we can obtain a finite sample and,
if we want, add observational (or genotyping) noise; see details in section 5.2, “Error models
and obtaining finite samples (or sampled genotype counts)”.

4 Probabilities of evolutionary paths and transition
probabilities

How to obtain probabilities of evolutionary paths for CBN and OT is detailed in Hosseini
et al. (2019) and Diaz-Uriarte and Vasallo (2019) (see S4 Text:
https://doi.org/10.1371/journal.pcbi.1007246.s006, section 3). Basically it involves
computing the product of all the transition probabilities between genotypes along all paths
from WT to the last possible genotype (for OT and CBN the genotype with all loci
mutated). For how to obtain transition probabilities see also Diaz-Colunga and Diaz-Uriarte
(2021) (specifically section 1 in S1 Appendix:
https://doi.org/10.1371/journal.pcbi.1009055.s001).
The procedures to obtain transition probabilities and probabilities of evolutionary paths for
H-ESBCN and MHN are similar to CBN: in all these methods we obtain probabilities of
paths from the transition matrix, which is itself obtained from the transition rate matrix.
The procedure with OncoBN is analogous to the one used with OT, both being untimed
models (and, in both cases, obtaining probabilities of paths, as discussed in Diaz-Uriarte and
Vasallo, 2019 is an abuse of the untimed model).

7Though for OncoBN we do not use Lik.genotype directly, as that would involve making the exact
same repeated set of calls for every individual; see the non-exported function DBN prob genotypes in file
onco-bn-process.R
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5 Generating random CPM/EvAM models, obtaining finite
samples from them, and error models

5.1 Generating random CPM/EvAM models and sampling from them

We often want to generate data under the model of a CPM. Common use cases are:

• Understand what different models imply about how the cross-sectional data looks like.

• Examine how well a method can recover the true structure when the data fulfills the
assumptions of a method. For instance, we would generate data under a particular
model and see if the method that implements that model can recover the true
structure under different sample sizes.

• Examine how a given method works, and what type of inferences it performs, when
data are generated under the model of another method. For example, what is the
output from MHN if the data are really coming from an H-ESBCN model?

Addressing the above needs involves:

1. Generating a random model.

2. Obtaining the predicted genotype frequencies from that model (see “Predicted
genotype frequencies”, section 3).

3. Obtaining a finite sample from the predicted frequencies of that model.

4. Using the data to answer whichever questions we had; for example, analyze the
sampled data with another or the same method, plot the genotype frequencies, etc.

We explain each one in turn below, with reference to evamtools functions and arguments.

1. Generating a random model.

Function random evam generates random models for OT, OncoBN, CBN, MHN,
OncoBN, and H-ESBCN. Details about the arguments of the function are provided in
its help page. No specific provision is made for randomly generating from MCCBN, as
the way to simulate is similar to CBN (generate a random poset and a random set of
lambdas).

2. Obtaining the predicted genotype frequencies from that model.

These are returned as part of the output of random evam (as well as part of the output
of evam). The predicted distribution of genotypes for a model is done assuming perfect
compliance with the model; see “Predicted genotype frequencies” (section 3).
Remember that the model in OT and OncoBN already includes deviations from the
“pure model” (see “CPMs: Error models”, section 2.3.6).

3. Obtaining a finite sample from the predicted frequencies of that model.

As the output from random evam is the same (except for the data components) to that
from evam we can pass the model to function sample CPMs.

When obtaining a finite sample, we can add sampling noise to the data. For example,
noise due to genotyping errors; the probability of errors is controlled by argument
obs noise in the call to sample CPMs.

In more detail, the process involves:
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(a) Obtaining a finite sample without errors from the predicted genotype frequencies.

(b) If requested (i.e., if obs noise > 0), flipping a fraction obs noise of the
observations (i.e., turning 1s to 0s and 0s to 1s).

4. Using the data to answer whichever questions we had; for example, analyze the
sampled data with another or the same method, plot the genotype frequencies, etc.

To make this simpler, function sample CPMs can return the finite sample (with or
without observation noise) as a typical cross-sectional data set: a matrix where each
row is a ”sampled genotype”, in which 0 denotes no alteration and 1 alteration in the
gene of the corresponding column. This data matrix can be used directly as input for
CPM methods, for instance as argument x (the cross-sectional data) to function evam.

5.2 Error models and obtaining finite samples (or sampled genotype
counts)

When obtaining a finite sample from a model, in all cases except OT, we have always
followed the same procedure: we have first generated the predicted genotype frequencies
under the model and, if requested, then added observational (e.g., genotyping) noise to the
finite samples obtained from the predicted frequencies8. Recall that, for OncoBN, the fitted
model (and, thus, the predicted frequencies under the model) already include deviations
from the “pure model”, as measured by ϵ; see section 2.3.6, “CPMs: Error models” and
section 2.3.2, “OncoBN”.
For OT, since epos (ϵ+) reflects both observation error and true deviations from the model,
the above procedure is not possible. We need to introduce a difference between sampling
from a model specified from scratch, such as a random model returned from function
random evam, and sampling from the predictions of a fitted model.
The fitted model for OT, when fitting a true data set, includes both epos (ϵ+) and eneg

(ϵ−). Predicted genotype frequencies are obtained using function
Oncotree::distribution.oncotree with, by default, argument with.errors = TRUE,
which is what argument with errors dist ot = TRUE to evam does. Therefore, from a
fitted model, the predictions incorporate both false positive and false negative error rates, as
estimated by oncotree.fit; as explained above, however, these estimated error rates are
both the errors from the observational process (genotyping errors, for example) and true
deviations from the model. When you later call sample CPMs you can add an obs noise with
value larger than 0, but for OT, when sampling from the model fitted to observed data this
might not make sense (since epos and eneg have been used already to produce the predicted
genotype frequencies). Thus, if we use with errors dist ot = TRUE in the evam call and
then set obs noise = 0 when calling sample CPMs, the observed data we generate should be
the same (have the same distribution) as if we had used Oncotree::generate.data with
method = ‘‘D1’’, with.errors = TRUE and edge.weights = ‘‘estimated’’.9

When sampling from a model specified from scratch, such as a random model returned from
function random evam, we generate the tree (the DAG) with density as given by argument

8Obtaining a finite sample of size N given a vector of relative frequencies is done in R using the function
sample.

9We can try to divide the epos component in a component like OncoBN’s ϵ and another noise component.
Then, we would first obtain the predicted distribution via distribution.oncotree with the ϵ-like (and with
eneg = 0), sample, and add noise. If epos > eneg we can do this so that the noise added is symmetrical. This
is shown in function dot noise gd 3 in inst/miscell/OT generate data sample CPMs.R.

In that same file inst/miscell/OT generate data sample CPMs.R we show that a model obtained from
random evam with ot oncobn eps = x and sampled using sample CPMs with obs noise = y gives predictions
with the same distribution as if we had used Oncotree::generate.data on that very same oncotree object but
with epos = x+ y − (1/2) x y and eneg = y.
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graph density and the weights from uniform distributions with limits given by
ot oncobn weight min and ot oncobn weight max. In addition, we can set a value larger
than 0 for ot oncobn epos. This will be used as the epos, but not eneg, value of the OT
model. When you sample and optionally add noise, with argument obs noise to function
sample CPMs, noise is added symmetrically (as for the CBN model —section 2.3.6, “CPMs:
Error models”). Thus, we use a procedure where ot oncobn epos behaves as OncoBN’s ϵ
and obs noise is purely symmetric observational error.
Why this difference? When you use a model fitted to real data, it is sensible to use
Oncotree’s inferential machinery to estimate the epos and eneg. If you later want to
generate samples, these already include deviations from the model and noise. However,
when you simulate a model, there is no data and thus no way to estimate epos and eneg.
Therefore, it is sensible to split errors into two distinct pieces, which is also coherent with
what we do with the rest of the methods: deviations from the model, and noise.

6 Random EvAM models and transitive reduction

As of now, the generation of random EvAM models uses transitively reduced graphs (we call
mccbn::random poset with argument trans reduced = TRUE). This does not decrease the
number of models that can be expressed when using CBN. However, it can limit the range of
models when we can mix AND, OR, XOR in the same model. The following examples
illustrate how this makes certain models impossible.

Figure 1: Non-transitively reduced DAG, OR and AND (left), non-transitively reduced DAG,
OR and XOR (center), transitively reduced DAG.

• Under the left-most DAG in Fig. 1 we cannot observe genotype BCD.

• Under the center DAG in Fig. 1 we cannot observe genotype ACD.

• Under the right-most DAG, which is the transitive reduction of the above two graphs,
we can observe both BCD and ACD.

Can we imagine biological scenarios where the left-most or center scenarios in Fig. 1 would
apply? Yes. We don’t recall seeing them in the literature, though. If this is deemed relevant,
it is just a matter of changing trans reduced = TRUE when we are simulating HESBCN
models inside function random evam.
You can of course construct the non-transitively reduced graphs “by hand” (creating the
data frame with the appropriate structure) or, much simpler, using the Shiny web app.
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7 H-ESBCN: details and examples of using λs and
computing transition rate matrices and predicted genotype
frequencies

Here I provide full details about how we interpret and use the results from the method
described in Angaroni et al. (2021). I do this here because, in contrast to CBN or MHN,
there is no existing previous code or examples that do this, and we found some potentially
confusing issues. I have turned this into a specific section so as not to break the flow of the
former sections.

7.1 Lambdas from the output: ”Best Lambdas” and ”lambdas matrix”

The output returned by the H-ESBCN C code contains a ”Best Lambdas” vector. The
output returned by function import.hesbcn (that we have included in the code, in file
HESBCN import.hesbcn.R) has an object called ”lambdas matrix” where each of the
lambdas for a gene is divided by the number of parents. This can be checked in any of the
examples in the PMCE repository. Code that shows three examples, with XOR, OR, AND,
is available under ”inst/miscell/examples/HESBCN-lambdas-from-examples.R”.
It is the output from ”Best lambdas” (i.e., the undivided lambdas) that are ”[the] rates of
the Poisson processes of the continuous-time HMM, associated with the vertices of the
model, which allow one to estimate the expected waiting time of a node, given that its
predecessor has occurred.” (p. 756). (What is the division? An operation that modifies an
internal data structure, and just a temporary operation, done merely for implementation
purposes. In line 95 of the code —as of current version, in
https://github.com/BIMIB-DISCo/PMCE/blob/main/Utilities/R/utils.R— the divided
lambdas are again summed, so the partition disappears: ”curr in lambda =
sum(hesbcn$lambdas matrix[,curr node])”, and it is that value that is used in further
downstream computations; email with the authors on 2021-07-09). The “Best lambdas” are
returned by our modified import.hesbcn function.

7.2 Interpreting OR and XOR (and AND)

I find Figure 1C of Angaroni et al. (2021) possibly confusing. First, the non-confusing part:
node ”D” has a rate when exactly one of B XOR C has occured, and node ”G” some other
rate when E or F or both E and F have occurred. (Note: the figure shows τs, not λs. The
comments here refer to the λs).
Now the (for me, at least) possibly confusing part: it seems that the node called ”B xor C”
is such that B and C have the same rates of dependencies on A; in other words, it would
seem to imply that λB = λC . Similarly, the node called ”E or F” seems to indicate that
both E and F have the same rate, so λE = λF . But this need not be so. In fact, virtually all
of the examples we have looked at, and the examples in their output, do not satisfy that the
rates to the genes that are part of a XOR, OR, or AND relationship are the same. For
instance, in the example above of Bladder Urothelial Carcinoma (see
”inst/miscell/examples/HESBCN-lambdas-from-examples.R”), KMT2D depends on
KMT2C and TP53, but the rate for KMT2C, λKMT2C = 0.1991 and that for TP53,
λTP53 = 0.8062.
Remember that the λ for a gene is the rate of the process until that mutation appears and is
fixated, given all the dependencies of that gene are satisfied (which is, of course, the same
interpretation as under CBN). Again: ”[the] rates of the Poisson processes of the
continuous-time HMM, associated with the vertices of the model, which allow one to
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estimate the expected waiting time of a node, given that its predecessor has occurred.” (p.
756).
But the rate at which the parents are satisfied can differ (as it was the case for CBN). A
difference with respect to CBN is that, with CBN, if a gene D depends on three genes A, B,
C, regardless of the lambdas of each of A, B, C, D can only happen once all of A, B, C are
present. With H-ESBCN and with OR and XOR relationships this is no longer the case: one
can see D with only A, for example.
What if some genes depend with and AND, others with a XOR and other with a OR? Just
apply the rules to each type of dependency: in the HESBCN model if a gene depends on a
set of genes, it has the same type of dependency on all the genes of that set.

7.3 Predicted genotype frequencies

Once we have the transition rate matrix, obtaining the predicted genotype frequencies uses
the same procedure as for CBN and MHN; see section 3.1, “Predicted genotype frequencies
for CBN, MCCBN, MHN, H-ESBCN”.

7.4 An example with OR and XOR

In this example:

• A, B, C depend on none.

• D depends, with an OR, on both A and B

• E depends, with an XOR, on B and C

• Transition rate matrix is shown below: rows are origin, column destination. λs are
those from ”Best Lambdas”.

(This example is also shown in section 2.3.4, “Hidden Extended Suppes-Bayes Causal
Networks (H-ESBCN)”).
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7.5 Three examples from actual analysis

• The code in inst/miscell/HESBCN-OR-XOR-AND-lambda-and-rates.R contains
examples of how we use those lambdas (the n, number of steps, used is ridiculously
small, and set to these tiny values just for the sake of speed).

1. OR

• Suppose output such as this (again, see file
inst/miscell/HESBCN-OR-XOR-AND-lambda-and-rates.R for how to reproduce
it).

$adjacency_matrix

Root A B C D

Root 0 1 1 0 0

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 0 0

D 0 0 0 0 0

$lambdas_matrix

Root A B C D

Root 0 8.083 2.585 0.000 0.0000

A 0 0.000 0.000 8.914 0.2062

B 0 0.000 0.000 8.914 0.2062

C 0 0.000 0.000 0.000 0.0000

D 0 0.000 0.000 0.000 0.0000

$parent_set

A B C D

"Single" "Single" "XOR" "OR"

$lambdas

[1] 8.0833 2.5854 17.8277 0.4124

$edges

From To Edge Lambdas Relation

1 Root A Root -> A 8.0833 Single

2 Root B Root -> B 2.5854 Single

3 A C A -> C 17.8277 XOR

4 B C B -> C 17.8277 XOR

5 A D A -> D 0.4124 OR

6 B D B -> D 0.4124 OR

• From the above output, these are the lambdas:
λA = 8.0833, λB = 2.5854, λC = 17.8277, λD = 0.4124.

• Focusing only on A, B, D, to see gene D we can follow four paths.

– The first two involve only two mutations:
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∗ WT → A → AD

∗ WT → B → BD

∗ The first is much faster, since the rate for the transition from WT to A is
8.1 compared to 2.6 of the transition B to D (from competing
exponentials, the probabilities of moving to A and B are 0.76 and 0.24,
respectively).

– In the other two paths D is the third gene to appear:

∗ WT → A → AB → ABD

∗ WT → B → AB → ABD

∗ These two paths take the same time, on average: both A and B need to
appear (with rates given by λA, λB) and then we need D to appear (λD).

– Similarly, to get to genotype ”A, B, D” we can follow these paths:

∗ WT → A → AB → ABD

∗ WT → B → AB → ABD

∗ WT → A → AD → ABD

∗ WT → B → BD → ABD

∗ All of them take the same expected time, as we need A, B, and D to
happen, each governed by λA, λB, λD, respectively.

• In terms of fitness, if we used OncoSimulR (see additional document “Using
OncoSimulR to get accessible genotypes and transition matrices”), we would
write, for the fitness of AB: (1 + λA)(1 + λB), for AD (1 + λA)(1 + λD), and for
ABD (1 + λA)(1 + λB)(1 + λD).

– Note, specifically, that genotypes AD and BD are not fitness equivalent,
unless λA = λB.

2. XOR

• Using the above example, and focusing only on A, B, C, these are the only ways
of seeing a C:

– WT → A → AC

– WT → B → BC

– As we have a XOR, no routes can go through AB.

– The first is much faster and common than the second (λA = 8.1;λB = 2.6).

– Fitness (again, this is relevant if using, for example, OncoSimulR) of AC is
(1 + λA)(1 + λC) and of BC (1 + λB)(1 + λC).

3. Both OR and XOR

• There is nothing new. As an example, gaining both C and D mutations.

– WT → A → AC → ACD

– WT → B → BC → BCD

– WT → A → AD → ACD

– WT → B → BD → BCD

– There is no path going through AB since C has a XOR relationship on A and
B.

– In the first path we first need to wait for A to happen (rate λA) then C (λC)
then D (λD).
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– Same for the second, with B instead of A. The first path is much more
common than the second.

– The third path transposes the order of occurrence of D and C, but takes the
same average time as the third. Note that the fitness of the final genotype is
the same through both routes, only the order of steps changes.

– The fourth path transposes the order of occurrence of D and C, but takes the
same average time as the fourth. Note that the fitness of the final genotype is
the same through both routes, only the order of steps changes.

7.6 Combining AND, OR, XOR?

Nothing changes. Use the rules for AND where there is an AND, XOR where there is a
XOR, OR where there is an OR. Again, in the HESBCN model if a gene depends on a set of
genes, it has the same type of dependency on all the genes of that set.
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8 FAQ

8.1 Web app, figures

8.1.1 In the figures, some times I get the error “Figure margins too large”

Solution: try to reduce the length of the gene names.
Longer explanation: It is impossible to accommodate, automatically, all possible use cases in
terms of length of genotypes (e.g., you analyzed a data set with 10 genes, and some have
names that are many characters long). We try to catch mistakes, but we might have missed
some.

8.1.2 In the figures, some times genotype names are truncated

This problem is related to the previous one: with very large genotype or gene names,
sometimes the only way to prevent the ”Figure margins too large” error is to make figure
margins smaller, which can result in truncation.

8.1.3 In the figures, some times the histograms are too tiny

Similar to previous problems: genotype or gene names are probably too large, so to
accommodate them we need to make the rest of the plot smaller.

8.2 Web app, saved output

8.2.1 When data are saved, genes without mutations are excluded

When creating user data (for instance, when adding new genotypes), any gene that has no
mutations is automatically excluded from the saved data, regardless of the setting for
number of genes. This is a feature, not a bug. For example, suppose you set the number of
genes to 3, but you only specify frequencies, or counts, for genotypes ”A” and ”A, B”. The
data set will only contain columns for genes A and B (since gene C has no mutations and it
would be excluded during the analyses). See also 8.5.

8.3 Web app: could we reduce the number of required clicks?

This issue was raised by one reviewer: Editing values inside the app typically must be
confirmed by an additional button press or key combination. It would be more convenient if
values updated automatically after pressing Enter or switching the input field.
We have taken the liberty of adding it to the FAQ because it clarifies our design decisions
and provides additional information about the behavior of the GUI.
We have tried to minimize additional button presses. Below we provide a description of the
current behavior, with detailed explanations of the reasons for the behavior. There are few
remaining cases where additional button presses or key combinations could be avoided.

• “Set the number of genes”: moving the slider has an immediate effect.

– For “Enter genotype frequencies manually”, new gene names are immediately
added to “Mutations” in the “Add genotypes” box.

– For DAG, new gene names are immediately added to the “To” and “From” lists
under 1. Define DAG, “New edge”.

– For MHN, it immediately resizes the log-Θ matrix; if data have already been
generated, and to prevent the data and the log-Θ matrix from being in
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inconsistent states, on every change of number of genes a new data set is
generated.

– (This is not applicable to “Upload file”: setting the number of genes is not
available here.)

• “Use different gene names” requires clicking on “Use these gene names” (on the popup
box that is opened on clicking on “Use different gene names”). This is on purpose;
first, forcing the change of gene names on switching input fields could lead to
disconcerting behavior especially because the renaming is often an operation of
renaming the complete set of genes, not just one of them; moreover, we try to convey
that using this option carelessly will lead to confusion (several warnings are provided
to minimize this careless use: on the box itself and on the tooltip). If users decide they
do not want to use different names after all, they can abort the operation by clicking
on “Dismiss”.

Since this option will be used sparingly and consciously, we think forcing explicit clicks
and not renaming on switching input field is the appropriate behavior.

• When uploading a file (under “Upload file”), there is no need to click on additional
buttons after entering a name in “Name for data”. The user enters a string for the
name, and then clicks on “Load data”; the entered string will become the name of the
data when the upload is finished (and that data, with that name, will be shown on the
left side, under “Examples and user’s data”).

• For DAG modification/creation, it is necessary to click on “Add edge” or “Remove
edge” after selecting the “From” and “To” nodes. The alternative (adding a
non-existent edge or removing an existing edge as soon as two nodes are selected),
even if it removes one click, gives rise to non-obvious behavior that can be hard to
understand. “Add/Remove edge” require an extra click but this extra click makes the
behavior clear and explicit, and allow for correcting the From/To nodes before
changing the DAG. Moreover, because we have separate buttons for “Add edge” and
“Remove edge”, user errors such as trying to remove an edge that does not exist, or
trying to add an edge that already exists, are much easier for users to understand:
when the error message pops-up, the clicked button (“Add edge”, “Remove edge”) is
still colored gray.

• For DAGs, when changing entries in the DAG table, as soon as “Ctrl + Enter” is
pressed, new values of the data are generated according to the new parameters,
without any need to press “Generate data from DAG model”.

(Several parameters and/or relations can be changed without clicking “Ctrl + Enter”
until all changes have been made: we move between entries of the table with Tab and
“Shift + Tab”, and click “Ctrl + Enter” only at the end).

• For MHN, if a data set has been generated previously, when changing entries in the
MHN table, as soon as “Ctrl + Enter” is pressed, new values of the data are generated
according to the new parameters, without any need to press “Generate data from
MHN model”. (As above, several entries of the table can be changed without clicking
“Ctrl + Enter” until all changes have been made; we can move between cells of the
table with Tab, and click “Ctrl + Enter” only at the end).

Why generate new data for MHN on log-Θ matrix modification only if data had been
previously generated, but generate it immediately for DAGs even if data had not been
modified?
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– We, and the users in our lab, seem to build DAG models step by step, and seem
to appreciate the immediate feedback from adding/removing edges, changing the
type of relationship, or modifying λs or conditional probabilities.

– We, and the user in our lab, seem to build MHNs by first thinking about a pattern
of relationships that involves more than one entry of the log-Θ matrix. Once the
initial model is specified, “Generate data” is clicked. After that has happened,
and to avoid the data and the log-Θ matrix from being in inconsistent states, we
always force a resampling of data when an entry of the matrix is changed.

– The difference in behavior would, at most, involve one extra click with MHN.

• For DAGs, when changing the “Type of model” (OT, OncoBN, CBN/H-ESBCN), if a
data set has been generated previously, new data are immediately generated, without
any need to press “Generate data from MHN model”. This both saves one click and
prevents the model and the data from possibly being in inconsistent states.

If no data have been generated we do not generate data. Why? For reasons similar to
above. In our experience, if there is no data present, users are likely to change the
model and then start modifying the DAG (adding/removing edges; changing type of
relationships; changing parameters). It seems reasonable to delay the sampling until
the sampling becomes necessary to prevent any possibly ambiguities or inconsistencies.

• For both DAG and MHN, switching from the input fields of “Number of genotypes to
sample”, “Observational noise”, and “epos, ϵ” (only for DAG) will not lead to
generating new data unless “Generate data from DAG/MHN” is clicked. In our
experience, these three parameters are often modified together; updating the data
immediately after switching from the input field leads to intermediate data updates
that get in the way of “modify this set of parameters, and then update according to
the new set”. Moreover, the operation could be slightly expensive, computationally, if
“Number of genotypes to sample” is a very large number.

Note, however, that we have changed the behavior of the app, so that changes to
settings of “Number of genotypes to sample” and “Observational noise” are now
preserved (within a session) and they are common to MHN and DAG. We think this
will minimize needing to repeatedly change them to the desired settings (as we think it
is reasonable that if a user is, say, using a sample size of 10000, this setting will be
desired for both DAGs and MHN); this also prevents having to set them again to the
desired value after, for example, moving to “Upload file” and back.

• When genotype data are modified (under “Change genotype’s counts”, and with the
same behavior in “Upload file”, “Enter genotype frequencies manually”, “DAG”,
“MHN”), as soon as the user enters “Ctrl + Enter”, the histogram displaying genotype
frequencies is updated.

Note, therefore, that a user can choose to modify the histogram with every change of a
genotype, or modify several genotypes without clicking “Ctrl + Enter” until the end:
modify the number, move with Tab to the next, modify, move with Tab to the next,
etc, and only update the histogram when all modifications have been done with a
single “Ctrl + Enter”.

• The “Rename the data” box requires entering a name and then clicking on the button
“Rename the data”. This is also on purpose: we think renaming the data should be a
very conscious action, and users will notice that, as soon as the “Rename the data”
button is clicked, that name appears on the left side, with a blue button denoting it is
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the current, selected one on which modifications are being made. This should also
prevent unwanted proliferation of data names that the user is not fully aware of having
explicitly created. Asking for a click here, instead of renaming immediately after
switching away from the input field, therefore, seems reasonable.

• Options under “Advanced options”: options are set just by changing them, without
any additional clicks. For example, the “Number of MCMC iterations” (under
“H-ESBCN options”) can be changed from the default 200000 to, say, 500000 just by
deleting the 2 and putting a 5 without additional clicks. Likewise, changing the
“Model” under “OncoBN options” requires clicking on the down arrow of the pull
down menu and clicking on “Conjunctive”, without additional clicks.

• In the “Output” tab, virtually all operations do not require any additional clicks and
are executed immediately. “CPMs to show” does not require extra clicks, but has a
small lag of about 0.9 seconds from the first click: redrawing is a potentially expensive
operation, and we do not start it until giving some reasonable time for the user to
click/unclick methods to show. “Download CPM results and analyzed data” opens the
standard popup box that allows to change the name and then asks for clicking on
“Save”.

In summary, thus, in most cases, few or none additional button presses are needed. We
think that those that remain fall into the following cases:

• The additional button or key press is unavoidable becaus of the way Shiny works.

• Not requiring this additional button or key press could lead to surprising and hard to
understand behavior.

• Potentially expensive operations that we only want to execute when the user is done
changing values.

8.4 Web app: some genes have disappeared, and instead I see a name
with an underscore (” ”)

Those events were indistinguishable, because they are completely aliased, i.e.,
indistinguishable, because they have identical patterns —identical columns in the data
matrix—.
There are example in the additional examples files.

8.5 Web app: the gene number slider changes automatically on changing
data set name

This is on purpose to keep consistency and also so that we save only the needed data. See
also 8.2.1.

8.6 Web app: Names of genes under ”Mutations” in Create, are resorted
on save/rename

This is on purpose. As explained by the tooltip, the list of genes next to ”Mutations” is kept
sorted (”natural order”) showing first the genes in existing genotypes, and then other genes
up to ””Number of genes”. The list will be resorted when new genes are added to genotypes.
”Mutations” is just a list of candidate gene names. You can see more (or fewer, up to the
number of genes in your genotypes) by moving the slider of ”Number of genes”. On
renaming of the data, we trigger a counting of the genes used, reset the slider of ”Number of
genes”, and reorder the gene names next to ”Mutations”.
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8.7 Web app: I want to rename my genes, after I made a complex graph,
and don’t want to reset it. What can I do?

This is borderline behavior, and we do not encourage it, but you can do it if you set all
genotypes to 0 via the ”Change genotype’s counts”. Why is this not encouraged? Because
the code is not intended for this.

8.8 Web app: the names of data sets are separate for DAG, MHN, etc

This is on purpose: it should help users organize data and experiments.

8.9 Web app: I do not find my data under ’Examples and user’s data’

Maybe you are not looking in the right place? If you created your data using DAGs, it will
not be shown under MHN, for example; see 8.8.

8.10 Web app: Changing gene number with MHN and forced generation
of data.

With MHN (but not DAG) , changing number of genes forces the generation of data from
the model (as if you had clicked on “Generate data from MHN model”) to prevent
inconsistent states between the data and the model. This is on purpose.
Under MHN, adding a gene amounts to adding a row and a column, and removing a gene
removing a row and a column; if we did not force a resample and you forgot to do it, the
genotype data could be left in a state completely inconsistent with the model. In contrast,
with DAGs, changing gene number has no effect on the model until you add/remove edges.
(This is why adding/removing edges from a DAG forces data generation.)

8.11 Why haven’t you used method X?

We have included here what we believe are the current state-of-the-art methods that have
existing public implementations that run in reasonable time. After searching the literature,
we have included any method that could be deemed appropriate. We have, in fact, provided
access to two very recent methods: H-ESBCN and OncoBN (and their github repos show we
have contributed bug reports).
Among the remaining methods available, most of them do not seem to be developed nor
used anymore. For some of these methods, their authors have developed newer methods that
seem to have superseded the former methods. Some other methods have dependencies on
external libraries that are not open source. And, of course, we cannot provide access to
methods that have no software, or have software that will run only under proprietary
systems. Some further comments are provided in S4 Text in Diaz-Uriarte and Vasallo (2019)
(https://doi.org/10.1371/journal.pcbi.1007246.s006).
If you think we have overlooked a method that should be included, please let us know.

8.12 With OncoBN sometimes I obtain DAGs that are not transitively
reduced

Yes, that can happen. See details here
https://github.com/phillipnicol/OncoBN/issues/5. There is an example of this in the
additional examples.
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8.13 With H-ESBCN sometimes I obtain DAGs that are not transitively
reduced

Yes, that can happen too. Again, there is an example of this in the additional examples.

8.14 In the DAG figures, why do nodes with two or more incoming edges
have only a single annotated edge with a number?

Because the number, which is the λ (CBN, HESBCN) or θ (OncoBN) is the rate (CBN,
HESBCN) or probability, conditional on the assumptions indicated by the DAG being
satisfied. So the λ or θ are per node, not per edge. For instance, suppose gene C depends on
both A and B (there is an AND); and you see a number of 0.7. That is the λ or θ for
observing C mutated when both A and B are mutated.
And why then not annotate the nodes, instead of the edges? Because in our experience:

• Annotating nodes leads to more confusing figures.

• Annotating edges shows what transitions are likely/fast, an idea not conveyed by
annotating nodes.

8.15 Do sampled genotype frequencies and counts contain observation
noise? And predicted genotype frequencies?

For all models except OT, predicted genotype frequencies do not have observation noise
added. The OT model itself estimates noise, and thus predicted frequencies obtained from
models fitted to observed data incorporate observation noise. See “CPMs: Error models”
(section 2.3.6).
When we obtain a finite sample from the predicted frequencies, you can decide to add
observation noise with argument obs noise to function sample CPMs; what happens with
OT depends on whether the predictions are from a simulated model or a model fit to
observed data; see details in “Error models and obtaining finite samples (or sampled
genotype counts)” (section 5.2).

8.16 Docker and setting up your own Shiny app

8.16.1 I want to setup my own Shiny app with different default “Advanced
options”

In file EvAM-Tools/evamtools/inst/shiny-examples/evamtools/ui.R search for
“Advanced options” and modify the defaults to whatever you want.

8.16.2 How can I use the Shiny app in a local intranet with load balancing
using multiple Docker instances

This is well beyond the scope of this document and there are many options available. One
that can work (and this is more or less what we actually do) is the following:

• Start multiple Docker instances (say, 20) by changing the range of ports, for example,
3010 to 3030.

• Use HAProxy (https://www.haproxy.org/) so that you have a single entry point for
all requests to the service that are then distributed, with load balancing, to the 20
instances. You will want to use “sticky connections” (see the HAProxy
documentation).

As said above, this is just a sketch of the basic procedure. There are many other options.
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8.16.3 If I use the Docker image for the package (rdiaz02/evamrstudio), can I
run the Shiny app?

Yes, you can. Just start a browser as explained in the README (https://github.com/
rdiaz02/EvAM-Tools#how-to-run-the-r-package-from-the-docker-image). Then, once
in RStudio, in the R console type runShiny() and you will have the interactive Shiny app
open. But even if you can do it, it is not clear why you’d want to do this: if you only want
to run the Shiny app, the Docker image rdiaz02/evamshiny is lighter and the steps to launch
it much faster.

8.16.4 Why aren’t you using Shiny Server?

Because we did not see it as necessary or convenient. If you want to run Shiny interactively
from an R session load evamtools and call function runShiny; no need for Shiny Server.
If we want to run Shiny as a service, with Docker images it is rather straightforward to
launch a bunch Docker instances and use HAProxy to access to them using load-balancing
(see 8.16.2) or any other such similar solution.
Moreover, notice this in the Shiny Server documentation
(https://shiny.rstudio.com/articles/shiny-server.html): “Shiny Server will host
each app at its own web address and automatically start the app when a user visits the
address. When the user leaves, Shiny Server will automatically stop the app. ” That is not
exactly what we want. We want the containers to be up and running, ready to answer
requests as they come with minimal latency. Moreover, a single Shiny Server would have
given access to a single instance of the app (so that if two or more users access the app, one
of the users has to wait while R is busy executing what the other user is running); to give
users access to multiple simultaneous instances we would have needed, for example, multiple
Docker images each with its own Shiny Server.
However, we might be missing something; if you think Shiny Server would allow or ease
some use cases, please let us know.

8.16.5 I want to build my own Docker images

If you want to modify the Docker images, modify the Dockerfiles: Dockerfile-evam-rstudio
(for the RStudio Dockerfile that launches RStudio) or Dockerfile-evam-shiny (well, for the
Dockerfile that creates the container to run shiny).
Then, from the ‘EvAM-Tools‘ directory run one or both of:

docker build -f Dockerfile-evam-shiny --tag somename .

docker build -f Dockerfile-evam-rstudio --tag somename .

You can now run these images, as explained in the README file..
Note: it is possible, and actually a better idea, to run docker without sudo; look a the
Docker documentation: https://docs.docker.com/engine/security/rootless/).

What if creating the image fails because of no internet connection from the
container Creating the above image requires installing R packages and that might fail
because the Docker container cannot connect with the internet. The following might help:
https://superuser.com/a/1582710, https://superuser.com/a/1619378. In many cases,
doing sudo systemctl restart docker might be enough.
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Cleaning the build cache and stale old images Sometimes (e.g., if the base
containers change or you want to remove build cache) you might want to issue

docker builder prune

or the much more drastic

docker system prune -a

Please, read the documentation for both.

Copying docker images from one machine to another Yes, that can be done. See
here, for example: https://stackoverflow.com/a/23938978

9 License and copyright

This work is Copyright, ©, 2022, Ramon Diaz-Uriarte.
Like the rest of this package (EvAM-Tools), this work is licensed under the GNU Affero
General Public License. You can redistribute it and/or modify it under the terms of the
GNU Affero General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
details.
You should have received a copy of the GNU Affero General Public License along with this
program. If not, see https://www.gnu.org/licenses/.
The source of this document and the EvAM-Tools package is at
https://github.com/rdiaz02/EvAM-Tools.
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9 References 45

1 Introduction

Here we present examples, with both real and simulated data, that illustrate the use and utility of
EvAM-Tools. Most of the previous examples can be run in the web app, and that is what we use
here. In the final section we discuss simulating random models, using the R package.

The objective of this document is not to provide complete analyses of any of the data sets,
or address any of the questions mentioned above in full (that would require full papers). The
objective is to illustrate the use of EvAM-Tools, especially its web app, and also to include some
examples of output that, although not necessarily very common, are not unusual and can seem
surprising at first (e.g., the variability among fitted H-ESBCN models, in “Is it just sample size?”,
section 2.2, or output with DAGs that are not transitively reduced in “A model with AND”, section
4.3).

1.1 Web app: overview of workflow and functionality, and relationship to these
examples

On the web app landing page, under “About EvAM-tools” (https://www.iib.uam.es/
evamtools/#overview) we provide an overview of the workflow and use cases. For com-
pleteness we repeat that material here, indicating, in bold, how the examples in this document
relate to the major functionalities and workflows discussed there.

The figure below provides an overview of the major workflows with the web app:
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The web app encompasses, thus, different major functionalities and workflows, mainly:

1. Inference of CPMs from user data uploaded from a file. Examples “Analyzing the BRCA
data set” (section 2.1) and “Analyzing the ovarian CGH data” (section 2.3).

2. Exploration of the inferences that different CPM methods yield from manually constructed
synthetic data. Example “Is it just sample size?” (section 2.2) uses a modification of
uploaded data to explore changes in sample size; example “Analyzing manually con-
structed synthetic data” (section 3) constructs synthetic data to examine the effect of
aliasing of events.

3. Construction of CPM models (DAGs with their rates/probabilities and MHN models) and
simulation of synthetic data from them.
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3.1. Examination of the consequences of different CPM models and their parameters on the
simulated data. Examples “What happens if we increase ϵ for OncoBN?” (section
4.1.1), “A simple exploration of MHN” (section 4.1.2).

3.2. Analysis of data simulated under one model with methods that have different models
(e.g., data simulated from CBN analyzed with OT and OncoBN). Examples “A model
with AND, XOR, OR” (section 4.2) and “A model with AND” (section 4.3).

3.3. Analysis of data simulated under one model with manual modification of specific
genotype frequencies prior to analyses (e.g., data simulated under CBN but where,
prior to analysis, we remove all observations with the WT genotype and the geno-
type with all loci mutated). Example “Modifying data generated from a CPM model
before analysis” (section 4.4).

The figure below highlights the different major functionalities and workflows, as numbered
above, over-imposed on the previous figure:
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Furthermore, note that in all cases, when data are analyzed, in addition to returning the fitted
models, the web app also returns the analysis of the CPMs in terms of their predictions such as
predicted genotype frequencies and transition probabilities between genotypes. Most of the exam-
ples below illustrate this, showing, for example, the predicted genotype frequencies and transition
probabilities.

1.2 Additional documentation

See additional documentation in https://rdiaz02.github.io/EvAM-Tools. In par-
ticular, additional details about CPMs, error models, predicting genotype frequencies, generat-
ing random evam models, and a FAQ is available from https://rdiaz02.github.io/
EvAM-Tools/pdfs/evamtools_methods_details_faq.pdf.

2 Analysis of cross-sectional data

We will analyze two cancer data sets, the ovarian cancer CGH data included in the Oncotree
package (Szabo and Pappas, 2022), and the BRCA data set for basal-like subtypes (from Cerami
et al., 2012; Gao et al., 2013, originally from Cancer Genome Atlas Research Network, 2012; see
Supplementary File S5_Text, https://doi.org/10.1371/journal.pcbi.1007246.
s007 of Diaz-Uriarte and Vasallo, 2019 for full details about data origins and preprocessing).
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So that you can use these data sets directly, we provide them in the repository (https://
github.com/rdiaz02/EvAM-Tools/tree/main/examples_for_upload). The di-
rect links are:

• BRCA_ba_s.csv: https://raw.githubusercontent.com/rdiaz02/EvAM-Tools/
main/examples_for_upload/BRCA_ba_s.csv

• ov2.csv: https://raw.githubusercontent.com/rdiaz02/EvAM-Tools/
main/examples_for_upload/ov2.csv

In section “Appendix: getting the BRCA and Ov data sets from the R console” (section 6) we
show how to obtain the data from the R console.

2.1 Analyzing the BRCA data set

We now import the BRCA csv data set, BRCA_ba_s.csv, into the web app, https://iib.
uam.es/evamtools. We go to the “User input” tab, and click, on the left, on “Upload file”;
we set the “Name for data” as “BRCA_ba”):

On “Load Data” we click on “Browse” and select the file from our file system; the data is
uploaded, and the genotypes’ frequencies are shown in the histogram on the right and the table at
the bottom (where, if we wanted, we could modify the genotype counts):
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Before running the analysis, we select the unselected H-ESBCN as one of the methods to
run (under “Advanced options and CPMs to use”). We also set the number of MCMC iterations
to 500000, instead of 200000, for increased stability of results; this increase in iterations will of
course result in longer running times.

We click “Run evamtools” and the output is shown in about 30 to 50 seconds1. For easier
display of the figures in this document, we select first three of the methods to show, by clicking,
on the left menu, under “Customize the visualization”:

1In this example, changing the setting for the number of MCMC iterations of H-ESBCN from 100000 to 500000 is
responsible for increasing the total running time from about 30 to about 50 seconds.
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First on the first three (CBN, OT, OncoBN)

Then on the next two (MHN, H-ESBCN)
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This is the output from the first three methods (CBN, OT, OncoBN):

And this from the next two methods (MHN, H-ESBCN):

(The above screen-captures only show the DAGs/MHN matrix; we are not showing the fig-
ures of the predictions of the fitted models, such as transition probabilities or predicted genotype
relative frequencies).

EvAM-Tools makes it immediate to see that:

• The output from OncoBn and OT is essentially identical.

• CBN and H-ESBCN give very different DAGs.

• OT and OncoBN differ from both CBN and H-ESBCN.

That OT and OncoBN give identical results is not surprising since OncoBN is using the dis-
junctive (OR relationships) model and has not found any disjunctive pattern. We can run OncoBN
using the conjunctive model. Go back to “User input” and click on “Advanced options and CPMs
to run” and set, for “OncoBN options”, the “Model” to “Conjunctive”:

Click on “Run evamtools” to obtain the new fit (since we are only interested in rerunning
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OncoBN, we might want to unclick the other methods, so as to make the run as fast as possible).
Interestingly, if we run OncoBN with conjunctive pattern, it does not show any conjunctions either
(the result is the same as shown above):

Thus, CBN seems to find support in the data for conjunctive dependencies that neither On-
coBN (run using the “Conjunctive” model) nor H-ESBCN find.

EvAM-Tools’s output also displays, in the Results tab, the original data as well as transition
probabilities, transition rates, and predicted genotype relative frequencies. We show the three
differing DAGs, MHN’s output, and the data, when we select “Transition probabilities” (tabular
output truncated in the screen capture):
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and when we select “Predicted genotype relative frequencies”:

(This, incidentally, shows that we probably would have wanted to use shorter genes names as
the histogram labels are too long).

From the above display we can conclude:

• The data contain very few cases where there are joint occurrences of two or more genes:
most joint occurrences appear only once.

• The conditional probabilities from OncoBN (or OT) indicate that the really likely event is
gaining TP53; the conditional probability of the remaining ones is very small.

• CBN leads to the same conclusion: the only large λ is that for TP53.

• MHN’s output points in the same direction: except for TP53, the diagonal entries of the
matrix are all negative and large in absolute value, and the off-diagonal entries are all es-
sentially 0. Thus MHN’s model is saying that we can fit the data reasonably well without
modeling inhibiting or facilitating relations between genes.

Therefore, we can conclude that the apparently different results are caused by differences in
the weighting of evidence: H-ESBCN, given the very small frequencies of most genotypes with
more than one mutation, is choosing not to take those as evidence of dependencies, and is instead
returning a simpler model.
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2.2 Is it just sample size?

We can examine more carefully the conjecture above: would H-ESBCN return a different DAG if
sample size were much larger but relative proportions were the same? We can do that easily with
EvAM-Tools. We simply go to the “User input” tab and multiply the genotype counts, for example
by 10 (which is trivially done by clicking on each cell and adding a 0; we can move between cells
using Tab and click “Ctrl + Enter” when we are done).

We rename the data first, and then increase the sample size. This is what it looks like:

10



Now, we rerun the analyses:

The DAGs and weights (lambdas, probabilities) are the same for OT, OncoBN and CBN. But
the models inferred by MHN and H-ESBCN have both changed, and the second now includes
dependencies between some of the genes. Some of these dependencies are similar to the ones in
the CBN output (PNPLA3 depends on RB1 and TP53; PIK3CA depends on TP53).

Interestingly, increasing the sample size another 10 times results in additional changes in the
MHN and H-ESBCN models (OT, OncoBN, and CBN only show minor changes, not shown be-
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low):

Note that in some runs, the output returned by H-ESBCN is different from the one above; with
H-ESBCN different runs can sometimes lead to different results. You can fix the random number
seed in “Advanced options” to prevent this, though this is not advisable, since fixing the seed
would precisely prevent us from seeing the instability of the fitted models. For example, if you set
the number of MCMC iterations (under “Advanced options”) to 100000 and the seed to 19, you
will obtain a model with an XOR2. In the web app we use, by default, 200000 MCMC iterations,
a number larger than the default in https://github.com/danro9685/HESBCN, precisely
to minimize this instability. In the examples in this document we use an even larger number of
500000 MCMC iterations to obtain more robust results and because none of the examples shown
take longer than about 1 minute to run. Variability of results from different runs can also be
observed with CBN sometimes (though, in our experience, it is less common than with H-ESBCN
with default parameters).

These results lead us to conclude tentatively that, compared to OT, CBN, and OncoBN, the
penalties used in H-ESBCN and MHN seem to have a larger effect on models fitted to modest
sample sizes.

2Note, though, that the output with the XOR also contains an edge with an extreme weight, which makes this
model suspect; more detailed exploration would use a range of seeds, and possibly change also the number of MCMC
iterations to run.
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2.3 Analyzing the ovarian CGH data

Lest readers think that the above (coincidence between OT and OncoBN, and H-ESBCN returning
star models with moderate sample sizes) are general patterns, we now show, for a different exam-
ple, the analyses of the ovarian CGH data. We upload the data ov2.csv and, as before, include
H-ESBCN in the methods and set the number of MCMC iterations of H-ESBCN to 500000.

This is the output from the web app (run takes a little over one minute):
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And we re-run the OncoBN model using the “Conjunctive” options (instead of the default
disjunctive —we did this before in section “Analyzing the BRCA data set”, section 2.1, and it
involves going back to “User input”, clicking on “Advanced options and CPMs to run” and setting,
for “OncoBN options”, the “Model” to “Conjunctive”). This is the output:

Interestingly, in the above run, H-ESBCN gives an identical structure to that of OT (parameters
are, of course, different: OT’s weights are conditional probabilities and H-ESBCN λs are rates).
Different runs of H-ESBCN can give different results, such as the following ones, where we also
ask the web app to display the predicted genotype frequencies:
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We can increase the number of MCMC iterations. When using 1000000 most runs tend to give
this model:

The variability between fitted H-ESBCN models might deserve a more careful exploration
and, in “for real” analyses, additional runs with 1000000 iterations or even more.

Now there are large similarities are between OT and CBN (though, of course, there can be
no conjunctions in OT). H-ESBCN finds identical restrictions for G3q (3q+) and G8q (8q+) as

15



OT and CBN; it also finds similar patters to OT for L5q and LXp; note that CBN shows L5q →
L8p and L5q → LXp and that H-ESBCN shows an OR for the dependency of L8p on G8q and
L5q, whereas CBN, which can only model ANDs, places an AND. OncoBN using the default
disjunctive relationship (OR, but not XOR) seems to suggest quite a different model (note that H-
ESBCN can also fit OR relationships). Interestingly, the conjunctive model for OncoBN is similar,
but not identical, to the ones from OT and CBN.
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2.4 Using the web app for small computational experiments

We have shown the output of repeated runs of H-ESBCN, changing the number of MCMC iter-
ations and possibly setting different random number seeds. GUIs and web apps are not the most
appropriate tools for a systematic exploration; instead, properly documented code as an R script
would be the preferred procedure. For small experiments, however, the web app is fine. A simple
way to keep track of what is done is as follows:

1. Upload the data, giving it a meaningful name (under “Name for data”); for example, ov.

2. Go to the “Rename the data” box, and add the settings you will use to the name of the data;
for example, for 500000 MCMC iterations with seed 14 for H-ESBCN enter ov_500K_s14
in “Give your data a name”, and click on “Rename the data”.

3. Under “Advanced options and CPMs to use” set the seed to 14 and the number of MCMC
iterations to 500000, possible also setting H-ESBCN as the only method to run.

4. Click on “Run evamtools”.

5. Repeat steps 2 to 4 as needed.

The “Results” tab will contain the output of the different runs, properly labeled so we can
examine, at will, outputs from runs with different settings.
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3 Analyzing manually constructed synthetic data

We will create some synthetic data to show the consequences of analyzing data where two events
are indistinguishable, because they are completely aliased, i.e., indistinguishable, because they
have identical patterns —identical columns in the data matrix—. Of course, manually constructed
synthetic data can be used to explore or examine many other patterns, unrelated to aliased events.

From the “User input” tab we select the “Enter genotype frequencies manually”:

Now, we enter some WT, for example, 20 WT observations. We select no mutations, and type
a “20” in “Counts”:

And when we click on “Add genotype” we see the histogram with 20 WT and the genotype
table with the 20 WT:
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We now add 15 observations with only A mutated (i.e., 15 individuals of genotype A), and 12
with both B and C (i.e., 12 individuals with genotype “B, C”); we first click on “A” on “Mutations”
putting a 15 in “Counts”

and then on “Add genotype”. We next click on B and C in “Mutations” putting a 12 in Counts.
We finally add 20 individuals with the “A, D” genotype (steps as before: click on A and D for
mutations, and put a 20 in counts). After these steps, we can see the genotype composition as
both a histogram and table:

So that it is easier to go back to these data, we give this data set a name, for example “Aliased_1”
under “Rename the data”.

Click the “Rename the data” button, so the name is used and you will see it listed on the left,
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under “Examples and user’s data:”

Now we click on “Run evamtools”. These are the fitted models (we did not use H-ESBCN here):

In the DAGs and the MHN log Θ matrix, as well as the transition probabilities, an event labelled
“C_B”. “C_B” is the name of the event created automatically by EvAM-Tools by fusing the “C”
and “B” events that are not distinguishable.

Note also that the models fitted by the DAGs, for example OncoBN or CBN, do not seem right
when we look at the parameters of the “C_B” event. That is because there are no “A, B, C”
events, and we would expect to see some if A on the one hand, and B and C on the other, are
occurring independently. We will add some observations (eight, for example) with all of A, B, C.
We go back to the “User input” tab, we “Rename the data” to “Aliased_2” (so that the new
modifications we are about to make do not affect “Aliased_1”), and we add genoytpe “A, B, C”
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with a count of 8. And we click on “Run evamtools”. This is the output

which is more sensible. Notice, however, that we still have “C_B” as an event because, in fact,
they remain completely aliased, indistinguishable. This aliasing would be broken by adding just a
single “C” or a single “B”, or a single “A, C”, or “A, B”, or “B, D” or “D, C” or any “A, B, D” or
“A, C, D”.
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4 Generating data from known models

The discussion in sections “Analyzing the BRCA data set” (section 2.1) and “Analyzing the
ovarian CGH data” (section 2.3) has used CPMs on two cancer data sets for which the truth is
unknown. To understand the differences between models, and the performance characteristics of
different methods, we can simulate data under a known model and examine if the true pattern can
be recovered. This is very easy to do with EvAM-Tools and addresses two commonly asked
questions:

• Can we recover the true structure?

• How do different methods perform when data has been generated under the assumptions of
another model?

This is what we will do below in examples “A model with AND, XOR, OR” (section 4.2) and “A
model with AND” (section 4.3). But EvAM-Tools is also useful to understand what different
models imply in terms of the data we would observe, even without considering what each method
would fit to a given observed data set; this is what we show in “CPM models: what type of data
they imply?” (section 4.1).

4.1 CPM models: what type of data they imply?

4.1.1 What happens if we increase ϵ for OncoBN?

We go to “User input” and, by default, the option “DAG and rates/cond. probs” is selected under
“Generate cross-sectional data from CPM models”. We can leave the default DAG in the selected
“DAG_Fork_4”. In “Type of model” under “Define DAG” we click on “OncoBN”:

and you can see that the last column of the DAG table is now called “theta”:

Now, click on “Generate data from DAG”; to make patterns easier to observe, set the “Number of
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genotypes to sample” to a large number, such as 10000. If we look at the histogram we will see
something similar to this one:

In particular, notice how the following genotypes are not observed: “A,D”, “B, C”, “B, C, D”, “A,
C, D”, as they are not possible if the restrictions are completely respected. Now, increase “epos,
ϵ” to, say, 0.15, and click again on “Generate data from DAG”; now we will observe at least a few
cases of all or most of the above four genotypes, as the predicted genotypes now incorporate
deviations from the model.

We could continue increasing the value of ϵ; this will result in increasing frequencies of the above
four genotypes, and a decrease in WT. Very large increases in ϵ will lead to a blurring of the
signature of this DAG.

A more advanced exploration of the role of deviations from the model in OT and OncoBN
compared to the role of observational noise would alter “epos, ϵ” with and without
simultaneously changing the value of “Observational noise”.
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4.1.2 A simple exploration of MHN

To try to gain a quick intuitive understanding of the multiplicative hazards model of MHN we go
to “User input” and then click on “MHN log-Θ matrix”

To start with a simple, yet not completely trivial, model, we set the number of genes to three:
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Now, we click on “Generate data from MHN model”:

In this model, there are not multiplicative effects between genes. This is what we obtain (again, it
might help to increase the Number of genotypes to sample to 10000 to decrease the role of
random sampling noise and focus on the predicted genotype frequencies):
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Let us now increase the baseline hazard of event B. For example, set log-Θ2,2 = 3. (Modify the
entry, and click on Ctrl-Enter). The figure changes dramatically and all genotypes that have “B”
have increased their frequency:
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Let us now create a very large promoting effect of B on C; for that, we enter, for example, a 4 on
the matrix entry (3, 2): log-Θ3,2 = 4:

Notice how genotype B is more common than either A or C, but now whenever there is B it
frequently in combination with C (much larger frequencies of genotypes B,C and A,B,C).
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But what if B also an inhibiting effect on A? Set log-Θ1,2 = −2:

Notice how the frequency of genotype A,B,C has gone down (and also, though it is harder to
appreciate, that of A,B).
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4.2 A model with AND, XOR, OR

Here, we will simulate data under a model that includes both AND, OR, and XOR relationships
(e.g., H-ESBCN). EvAM-Tools, in its web app, already includes such a model for five genes:

If we want, we can change values (rates, relationships, noise, etc). We will change the rates of A,
B, D, and E, setting them to 3.2, 1.5, 2, and 1, respectively; we set the number of genotypes to
sample to 1000 and we will add 1% of Observation noise (i.e., we will type 0.01 in the
“Observational nose (genotyping error)” box). Then, we click on “Generate data from DAG”,
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and obtain data simulated under that model:

(Of course, the actual simulated data you are likely to obtain will differ from this one).

Now, we click “Run evamtools”, after adding H-ESBCN to the set of methods and setting its
number of MCMC iterations to 500000 (again, this is done under “Advanced options and CPMs
to use”). After about 30 seconds we obtain the output. In the plots below, and as we did before,
we split it into three and two methods so it is easier to see. We show the models with two of the
predictions: transition probabilities and predicted genotype relative frequencies (these predictions
are also shown in the table, which we do not show below).

Note that the histograms of predicted genotype frequencies display, at most, the 20 most frequent
genotypes (because of reasons of limited plotting space); all predicted genotypes are shown in the
table.
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And, as has been the case before, repeated runs of H-ESBCN can lead to different results, for
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example:

None of OT, CBN, or OncoBN can capture XOR relationships. But in this case, H-ESBCN
incorrectly infers an XOR for D (it is really an OR) and an OR for C (it is really an AND).

We could increase the sample size by 10 by just setting “Number of genotypes to sample” to
10000 or add different levels of noise, etc.

We could also ask to get, as return, not only the predicted genotype relative frequencies, but
sampled genotype counts with, possibly, some noise added. Even without noise added, the
relative frequencies of the sampled genotype counts would differ from the predicted genotype
relative frequencies just because of sampling noise. We can do that by going back to the “User
input” tab, clicking on “Advanced options and CPMs to use” and setting “Sample genotypes” to
TRUE and selecting the number of samples, which here we set equal to the sample size of
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original data set (i.e., 1000); we also set the observation noise to 0.01.

We hit on “Run evamtools” and, as before, we get the output but we now have one extra possible
“Predictions from fitted models to display”:
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And this is the output for three of the models; notice the added variability (i.e., how the relative
heights and even the actual genotypes present are not the same as in the predicted genotype
counts):

Of course, you can switch from displaying “Sampled genotype counts” to displaying “Predicted
genotype counts” just by clicking on the button on the left.
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4.3 A model with AND

Let us use now a model with AND; we use the preselected “DAG_AND”, with 1000 observations
and a 5% (0.05) genotyping error. Remember to click on “Generate data from DAG” after
changing the noise level:

These are the fitted models:
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H-ESBCN incorrectly infers the AND as an OR. CBN correctly infers the underlying model and
provides estimates of the parameters that are very close to the true ones. OT and OncoBN cannot
infer the correct true dependencies: OT because it cannot fit DAGs, but only trees (i.e., each node
has only one parent) and OncoBN because it was run in disjunctive mode (OR relationships). We
can run OncoBN using the conjunctive model; we have done this before (sections “Analyzing the
BRCA data set”, section 2.1 and “Analyzing the ovarian CGH data”, section 2.3) and it involves
going to “Advanced options and CPMs to run” and setting, for “OncoBN options”, the “Model”
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to “Conjunctive”:

This is the output we get:

This correctly identifies the joint dependency of D on both B and C, but there is also and edge
between A and D that we would never observe with CBN (as CBN always returns the transitively
reduced DAGs); this is a technical issue beyond the scope of this document, but one that we have
discussed in the OncoBN repo3.

For H-ESBCN the returned model also includes an edge, the one between A and B, that is not
necessary: since B depends on C and C depends on A, having B depend with an AND on both A
and C is not needed (i.e., the transitive reduction of that DAG would remove the edge from A ->
B). Note also that removing the A -> B arrow does not affect the relationships with D. Of course,
for the relationships between C, B, and D we should not return the transitive reduction (as that
would break the OR of D on either C or B). Thus, a model without the A→ B would generate the
exact same predictions as the model returned by H-ESBCN. (Why does this happen with
H-ESBCN? It is a consequence of the heuristic search over DAG structures, which can
occasionally return these topologies).

4.4 Modifying data generated from a CPM model before analysis

What if the data came from a given model but some additional process had altered the genotype
data? For example, suppose data really came from a CBN model, but the frequency of WT
genotypes is too small because the data have been filtered to contain only genotypes with at least
one driver mutation, or the data contain some contaminated samples that would never had

3https://github.com/phillipnicol/OncoBN/issues/5
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become tumores and have an excess of WT. We can explore this by generating data from a CPM
model and, then, modifying the genotype composition, as we did in section “Is it just sample
size?” (section 2.2) when we modified uploaded data.

As an example, go to “User input”, “DAG and rates/cond. probs”, and use the default selected
“DAG_Fork_4”. Change lambdas to 2, 2.5, 1, 1.5, for A, B, C, D, respectively. Add 1% of
observational noise. And set the “Number of genotypes to sample” to 5000, to ensure small
sample sizes are not the culprit of different inferences. Click on “Generate data from DAG” and,
for simplicity, then analyze the data with OT, OncoBN, CBN, MHN, and H-ESBCN.

This is the output:

CBN correctly infers the DAG and the estimates of the λs are close to the true ones. The other
methods are not able to infer this model correctly.

Now, go back to the “User input”. Before modifying the data, and to keep a copy of the originally
generated one, on the “Rename data” type a name (e.g., “data_original”) and click on “Rename
data”. Now, enter a new name in “Rename data”, for example “data_few_wt”, click on “Rename
data”, and modify the WT frequency; I change it from its original value of 912 to 9. And then,
analyze the data clicking on “Run evamtools”. This is the output:

OT and OncoBN get the structure right, and for CBN the main consequence is altering the rates
of A and B, increasing them (which is what we would expect). MHN also has increased estimates
of log-ΘA,A and log-ΘB,B when we reduced the frequency of WT.

What if we removed the WT completely? We go back (and, if it is not the selected one, click, on
the left, under “Examples and user’s data”, on “data_original”), and set WT to 0 (possibly after
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creating a new data set, “data_no_wt”) and analyze them:

The effect is minor, which is not surprising, since the large cut in WT had been going from 912 to
9.

We could, instead, eliminate all the observations with the four mutations (e.g., maybe genotypes
with three driver mutations are already generally lethal to the organism?). We go to “User input”,
select, on the left, “data_original”, rename it (“no_all_mut”), and set to 0 the A,B,C,D genotype.

The DAG structures for CBN, OT, OncoBN are preserved, but now H-ESBCN has modeled an
XOR; the XOR models is not actually present, but unless there are XOR or similar phenomena,
models with AND and OR cannot model the absence of A,B,C,D, given the relatively high
frequencies of the rest of the genotypes (the CBN model, for example, has decreased the
estimates of all the λs).

We could also, as mentioned at the beginning of this section, increase the number of WTs. Etc,
etc. We will not pursue this any further here. The key message from this section is that
EvAM-Tools makes it very simple to examine targeted, specific, deviations in genotype
composition from the genotype composition generated by a CPM model.
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5 Simulating random CPMs/evams

If we were interested in systematically examining the performance of the different methods under
different models, simulating random CPM (or evam) models is crucial. This type of work
(generating and analyzing large numbers of simulations) is not suited for a web app, but it can be
easily done with the R package. The key function here is random_evam.

## Load the package
library(evamtools)
## For reproductibility
set.seed(3)
he_r1 <- random_evam(ngenes = 5, model = "HESBCN")
he_r1$HESBCN_model

## From To edge Lambdas Relation
## 1 Root A Root -> A 0.6656892 Single
## 2 Root B Root -> B 1.1189358 Single
## 3 A C A -> C 1.8736265 Single
## 4 A D A -> D 2.0159447 XOR
## 5 A E A -> E 1.6987091 Single
## 6 B D B -> D 2.0159447 XOR

## Now, simulate a data set of size 200 from that model
## with 5% genotyping error

he_s1 <- sample_evam(he_r1, N = 200, obs_noise = 0.05)

## Analyze this data with all the methods except MCCBN (for speed)

he_s1_anal <- evam(he_s1$HESBCN_sampled_genotype_counts_as_data,
methods = c("CBN", "OT", "OncoBN",

"HESBCN", "MHN"))

## Show the fitted DAGs
he_s1_anal[grepl("_model", names(he_s1_anal))]

## $OT_model
## From To edge OT_edgeBootFreq OT_edgeWeight OT_obsMarginal
## A Root A Root -> A NA 0.3148883 0.345
## B Root B Root -> B NA 0.4069873 0.430
## D Root D Root -> D NA 0.3040531 0.335
## E A E A -> E NA 0.5851968 0.225
## C E C E -> C NA 0.9163967 0.210
## OT_predMarginal
## A 0.3450000
## B 0.4300000
## D 0.3350000
## E 0.2244513
## C 0.2102331
##
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## $CBN_model
## From To edge init_lambda final_lambda rerun_lambda CBN_edgeBootFreq
## A Root A Root -> A 0.433470 0.433470 0.433470 NA
## B Root B Root -> B 0.678177 0.678177 0.678177 NA
## C E C E -> C 15.918836 15.916943 15.918836 NA
## D Root D Root -> D 0.454241 0.454241 0.454241 NA
## E A E A -> E 2.020337 2.020351 2.020337 NA
##
## $MCCBN_model
## [1] NA
##
## $OncoBN_model
## From To edge theta Relation
## 2 Root B Root -> B 0.4300000 Single
## 3 Root C Root -> C 0.2100000 Single
## 1 C A C -> A 0.9285714 Single
## 4 B D B -> D 0.5045045 OR
## 5 C D C -> D 0.5045045 OR
## 6 C E C -> E 0.7857143 Single
##
## $OncoBN_fitted_model
## [1] "DBN"
##
## $HESBCN_model
## From To Edge Lambdas Relation
## 1 Root A Root -> A 0.470187 Single
## 2 Root B Root -> B 0.643660 Single
## 3 A C A -> C 1.956360 Single
## 4 A D A -> D 0.878038 OR
## 5 B D B -> D 0.878038 OR
## 6 C E C -> E 1.174950 OR
## 7 D E D -> E 1.174950 OR

## Show MHN
he_s1_anal["MHN_theta"]

## $MHN_theta
## A B C D E
## A -0.52 0.61 0.00 -2.48 0.00
## B -2.30 -0.23 -2.33 1.47 -0.01
## C 3.42 -0.31 -3.04 -0.24 0.00
## D 0.19 -3.53 1.23 -0.44 0.00
## E 1.31 -0.44 2.19 -0.32 -2.13

This is just one example; serious simulation studies would examine exhaustively a range of
scenarios. And we could, of course, compare other output, such as the predicted genotype
frequencies, or the probabilities of paths to the maximum (use argument paths_max = TRUE
when calling evam), etc. But this should be enough to show you how EvAM-Tools can be used
to systematically compare the performance of different methods in different scenarios.
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6 Appendix: getting the BRCA and Ov data sets from the R console

Here we show how to obtain, from the R console, the two data sets used in section “Analysis of
cross-sectional data” (section 2). We simply export those data in a CSV format that can be
uploaded to the web app.

## Load the package to access the BRCA data
library(evamtools)
data(every_which_way_data)

## You can check the names here, which are the same
## as in Suppl File S5 Text of Diaz-Uriarte & Vasallo, 2019
## names(every_which_way_data)

write.csv(every_which_way_data[["BRCA_ba_s"]],
file = "BRCA_ba_s.csv", row.names = FALSE,
quote = FALSE)

## Now export the ovarian cancer CGH data
library(Oncotree)

## Loading required package: boot

data(ov.cgh)

## Rename column names: they start with a number and
## finish on a "+" (gain) or "-" (loss), so automatically
## reading these column names removes the +/- and adds an
## "X" as the first character. Let us have columns start
## with L or G for loss/gain.

new_cn <- stringi::stri_sub(colnames(ov.cgh), 1L, 2L)
new_cn <- paste(ifelse(grepl("+", colnames(ov.cgh), fixed = TRUE),

"G", "L"), new_cn, sep = "")
ov2 <- ov.cgh
colnames(ov2) <- new_cn
write.csv(ov2,

file = "ov2.csv", row.names = FALSE, quote = FALSE)
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7 License and copyright

This work is Copyright, ©, 2022, Ramon Diaz-Uriarte.

Like the rest of this package (EvAM-Tools), this work is licensed under the GNU Affero General
Public License. You can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this
program. If not, see https://www.gnu.org/licenses/.

The source of this document and the EvAM-Tools package is at
https://github.com/rdiaz02/EvAM-Tools.
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evam Runs the CPMs (or evams)

Description

Executes all CPMS given a cross sectional data set.

Usage

evam(x,
methods = c("CBN", "OT", "HESBCN", "MHN", "OncoBN", "MCCBN"),
max_cols = 15,
cores = detectCores(),
paths_max = FALSE,
mhn_opts = list(lambda = 1/nrow(x),

omp_threads = ifelse(cores > 1, 1, detectCores())),
ot_opts = list(with_errors_dist_ot = TRUE),
cbn_opts = list(

omp_threads = 1,
init_poset = "OT"

),
hesbcn_opts = list(

MCMC_iter = 100000,
seed = NULL,
reg = c("bic", "aic", "loglik"),
silent = TRUE

),
oncobn_opts = list(

model = "DBN",
algorithm = "DP",
k = 3,
epsilon = min(colMeans(x)/2),
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silent = TRUE
),

mccbn_opts = list(
model = "OT-CBN",
tmp_dir = NULL,
addname = NULL,
silent = TRUE,
L = 100,
sampling = c("forward", "add-remove",

"backward", "bernoulli", "pool"),
max.iter = 100L,
update.step.size = 20L,
tol = 0.001,
max.lambda.val = 1e+06,
T0 = 50,
adap.rate = 0.3,
acceptance.rate = NULL,
step.size = NULL,
max.iter.asa = 10000L,
neighborhood.dist = 1L,
adaptive = TRUE,
thrds = 1L,
verbose = FALSE,
seed = NULL)

)

Arguments

x cross sectional data

methods Methods to use. A vector with one or more of the following strings, “OT”,
“OncoBN”, “CBN”, “MCCBN”, “MHN”, “HESBCN”.

max_cols Maximum number of columns to use in the analysis. If x has > max_cols, se-
lected columns are those with the largest number of events.

cores If larger than 1, use mclapply to run all methods. This is the default. If you use
mclapply, MHN and MCCBN should not use OMP (i.e., the number of threads
for OMP for MHN and MCCBN should be 1).

paths_max If TRUE, return all paths to the maxim/maxima, with their probabilities. See
details for how they are computed.

mhn_opts A list with two named arguments.

• lambda: The penalty for MHN. Defaults to 1/nrow(data). (These are not
the lambdas as the estimated parameters for the rates of the continuous-
time Markov chains for MHN or CBN or HESBCN.)

• omp_threads: Number of OMP threads for MHN. Do not pass thrds > 1
with cores > 1: as with MCCBN, do not use OpenMP threads from forked
process from mclapply.

ot_opts A list with the single named argument with_errors_dist_ot: value for option
with with.errors in the call to distribution.oncotree. A value of TRUE
means to incorporate the false positive and negative errors when returning the
probabilities of genotypes under OT. Note that for large models using a value of
TRUE can result in very long computing times. Default is TRUE.
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cbn_opts A named list with arguments passed to CBN.

• omp_threads: OMP threads to be used by CBN (set via the environment
variable OMP_NUM_THREADS). Defaults to 1. In contrast to MCCBN
and MHN, you can set this to a number larger than one even if you set cores
to a number larger than one (i.e., if we use mclapply). It is unclear, though,
more than 1 thread will speed things much or what is the best number of
threads to use; in fact, sometimes it can even slow things down, in particular
if you run multiple evams in parallel.

• cbn_init_poset: Initial poset for CBN; one of "linear" or "OT" (default).

hesbcn_opts Named list of arguments used in the fit of H-ESBCN (details in https://
github.com/danro9685/HESBCN).

• MCMC_iter: Number of MCMC iterations to run; this is argument "-n, –
number_samples" in the original H-ESBCN C code. Default: 100000, as in
the original implementation. Note that the web app uses a larger default of
200000.

• reg: Regularization: one of bic (default), aic, loglik.
• seed: Seed to run the experiment
• silent: Whether to run show message showing the folder name where HES-

BCN is run

oncobn_opts Named list of arguments used in the fit of OncoBN. See fitCPN.

mccbn_opts Named list of arguments used in the fit of MC-CBN. These are model (one of
OT-CBN or H-CBN2). The rest are options passed to adaptive.simulated.annealing;
see the help of adaptive.simulated.annealing for details. In addition, the
following options:

• tmp_dir: Directory name where the oput is located. This is passed to
adaptive.simulated.annealing, as argument outdir, with addname added,
if provided.

• addname: String to append to the temporary directory name. Default is
NULL.

• silent: Whether to show a message with the name of the directory where
MCCBN is run. This silen is different from mccbn_hcbn2_opts$verbose.

Note: do not pass thrds > 1 with cores > 1: as with MHN, do not use OpenMP
threads from forked process from mclapply.

Details

Probabilities of evolutionary paths or paths of tumor progression

Details and examples on how probabilities of paths are computed are given in Diaz-Uriarte and
Vasallo, 2019 (specifically, see section 3 of file S4_Text, https://doi.org/10.1371/journal.
pcbi.1007246.s006); see also Hosseini et al., 2019. The models used in those papers all had a
single local maximum. Here we follow the same procedure also for models with possibly more than
one maximum, such as H-ESBCN. Note that in all cases we assume evolution can only move uphill
in fitness and never crosses fitness valleys (which excludes, for example, the scenarios considered
in Weinreich and Chao, 2005).

Value

A list with named components (that should be self-explanatory). The pattern is method_component.

https://github.com/danro9685/HESBCN
https://github.com/danro9685/HESBCN
https://doi.org/10.1371/journal.pcbi.1007246.s006
https://doi.org/10.1371/journal.pcbi.1007246.s006
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• OT_model: Data frame with parent and descendant edges, edge weight, and observed and
predicted frequencies of genes.

• OT_f_graph: The fitness graph, as a sparse matrix, with weights obtained from the edge
weights (this is not a transition rate matrix). See full documentation for details.

• OT_trans_mat: Transition matrix between genotypes. This is really an abuse of what an
untimed OT provides. See full documentation for details.

• OT_predicted_genotype_freqs: Probabilities of genotypes from the OT model, as a data frame.

• OT_paths_max: If paths_max is TRUE, a list of two components, paths and weights. The
paths list is a list of igraph.vs (igraph vertex sequences) objects, one for each path; the
weights is vector of log-probabilities of each path. If paths_max is FALSE, the default, NA.

• CBN_model: Similar to the ouput from OT, but with lambdas. The lambda to be used is
"rerun_lambda".

• CBN_trans_rate_mat: Transition rate matrix as a sparse matrix.

• CBN_trans_mat: Transition matrix between genotypes, obtained from the transition rate ma-
trix using competing exponentials.

• CBN_td_trans_mat: Time-discretized transition matrix, using the uniformization method; see
full documentation for details.

• CBN_predicted_genotype_freqs: Named vector of probabilities of genotypes predicted by the
CBN model (under a model where sampling times are distributed as an exponential of rate 1).

• CBN_paths_max: As for OT.

• MCCBN_model: As for CBN, only with one column of λs.

• MCCBN_trans_rate_mat: As for CBN.

• MCCBN_trans_mat: As for CBN.

• MCCBN_td_trans_mat: As for CBN.

• MCCBN_predicted_genotype_freqs: As for CBN.

• MCCBN_paths_max: As for OT.

• MHN_theta: Matrix of estimated thetas (the log-Theta matrix). The values in this matrix can
range from minus to plus infinity.

• MHN_trans_rate_mat: As for CBN.

• MHN_trans_mat: As for CBN.

• MHN_td_trans_mat: As for CBN.

• MHN_exp_theta: Matrix of the exponential of thetas; the matrix Θ in Schill et al. (just each
theta, exponentiated; not the matrix exponential of the matrix of thetas). These are the multi-
plicative effects themselves.

• MHN_predicted_genotype_freqs: As for CBN.

• MHN_paths_max: As for OT.

• OncoBN_model: Similar to the ones above (but with a column named theta, instead of lamb-
das or edge weights), with the additional column dQuoteRelation, that can take values OR
(if fitting model DBN) or AND (if fitting model CBN); Single indicates nodes with a single
ancestor (where OR or AND make no difference).

• OncoBN_likelihood: Likelihood of the OncoBN model.

• OncoBN_f_graph: As for OT.

• OncoBN_trans_mat: As for OT.

• OncoBN_predicted_genotype_freqs: As for OT.
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• OncoBN_fitted_model: DBN or CBN, depending on what you chose.

• OncoBN_epsilon: Epsilon (this is an argument of the call to evam, but it is evaluated after
possibly having modified the input data; see below).

• OncoBN_parent_set: .

• OncoBN_paths_max: As for OT.

• HESBCN_model: As for CBN.

• HESBCN_parent_set: As for CBN.

• HESBCN_trans_rate_mat: As for CBN.

• HESBCN_trans_mat: As for CBN.

• HESBCN_td_trans_mat: As for CBN.

• HESBCN_predicted_genotype_freqs: As for CBN.

• HESBCN_paths_max: As for OT.

• original_data: The original data.

• analyzed_data: The data that were actually analyzed. Can differ from the original data because
of the data pre-processing steps.

• genotype_id_ordered: A named vector, from 1:number of genotypes, with names the geno-
types. This can be useful for sorting; WT has value 1, and genotypes are ordered by increasing
number of mutations and, withing number of mutations, alphanumerically.

• all_options: All of the options used, as a list of lists.

Note

For some methods, such as MHN and OncoBN, some parameters tipically depend on the data
(lambda and epsilon for MHN and OncoBN, respectively). Since we first examine and possibly
modify the input data, the values might not be the ones you thought you entered, as the options
should be evaluated after the data are pre-processed.

The data pre-processing involves, in sequence, these steps:

• Adding pseudosamples: If any gene (column) is always observed mutated (i.e, has a value of
1 for all observations), we add one observation that has no gene mutated.

• Removing genes with no mutations: Any column that has value of 0 for all observations is
removed.

• Merging identical columns: Any identical columns are replaced by a single one (with a new
identifier, the result of pasting the names of the fused columns separated by a _).

• No more than max_cols: If the “max_cols” argument is not NULL, and if the data set has
more columns that max_cols, we keep only max_cols columns of data, those with the largest
number of mutations.

Changing only some options: Often, you will want to change only some of the options. You can
enter, in the list, only the options you want changed (not the remaining ones). There is one example
below.

During the execution, and as messages, the elapsed time of each procedure is reported. This includes
executing the model itself and possible additional operations, such as obtaining the transition rate
matrix, etc. (So, for example, the time for estimating the matrix of thetas for MHN is much smaller
than the reported time here, which also includes building the transition rate matrix).

By default, we do not return paths to maximum/maxima, as their number can grow very quickly
with number of genotypes and you only need them if, well, you care about them.
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See Also

sample_evam, plot_evam

Examples

data(every_which_way_data)
## Use a small data set for speed.
Dat1 <- every_which_way_data[[16]][1:40, 2:6]

## Use MCCBN only if installed
MCCBN_INSTALLED <- requireNamespace("mccbn", quietly = TRUE)
methods <- c("CBN", "OT", "OncoBN", "MHN", "HESBCN")
if (MCCBN_INSTALLED) {

methods <- c(methods, "MCCBN")
}

out1 <- evam(Dat1,
methods = methods)

## Running only some methods and changing some options
## (this example is not necessarily sensible!)
## Of course, we must use the name of the data in an option that is
## data-dependent

out2 <- evam(Dat1,
methods = c("CBN", "OT", "OncoBN",

"MHN"),
mhn_opts = list(lambda = 5/nrow(Dat1)),
cbn_opts = list(omp_threads = 2),
oncobn_opts = list(model = "CBN"))

## Getting paths to maximum/maxima. Using only two methods
## for faster execution
out3 <- evam(Dat1,

methods = c("MHN", "OncoBN"),
paths_max = TRUE)

out3$OncoBN_paths_max
out3$MHN_paths_max

evamtools-deprecated Deprecated functions in package ‘evamtools’

Description

These functions are provided for compatibility with older versions of ‘evamtools’ only, and will be
defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:
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• plot_CPMs: plot_evam

• sample_CPMs: sample_evam

every_which_way_data Cancer data sets from Diaz-Uriarte and Vasallo, 2019; also used in
Diaz-Colunga and Diaz-Uriarte, 2021.

Description

Twenty two cancer data sets used in Diaz-Uriarte and Vasallo, 2019, as well as Diaz-Colunga and
Diaz-Uriarte, 2021. The data cover six different cancer types (breast, glioblastoma, lung, ovarian,
colorectal, and pancreatic cancer), use different types of features (nonsynonymous somatic muta-
tions, copy number alterations, or both) were analyzed in terms of pathways, functional modules,
genes, gene events, or mutations (yielding from 3 to 192 different features), and have samples sizes
from 27 to 594.

The original sources are listed below. Most of these data sets have been used before in CPM
research.

Complete details about sources, processing, and former use in CPM papers are available from S5
Text (https://doi.org/10.1371/journal.pcbi.1007246.s007) of Diaz-Uriarte and Vasallo, 2019.

Usage

data("every_which_way_data")

Format

A list of length 22. Each element of the list is a data set, with subjects in rows and genes/probes in
columns.

References

Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue
of Somatic Mutations in Cancer) Database and Website. Br J Cancer. 2004;91(2):355–358.

Cancer Genome Atlas Research Network. Comprehensive Genomic Characterization Defines Hu-
man Glioblastoma Genes and Core Pathways. Nature. 2008;455(7216):1061–1068.

Cancer Genome Atlas Research Network. Comprehensive Genomic Characterization Defines Hu-
man Glioblastoma Genes and Core Pathways. Nature. 2008;455(7216):1061–1068.

Jones S, Zhang X, Parsons DW, Lin JCH, Leary RJ, Angenendt P, et al. Core Signaling Pathways
in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science (New York, NY).
2008;321(5897):1801–6.

Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, et al. An Integrated Genomic
Analysis of Human Glioblastoma Multiforme. Science. 2008;321(5897):1807–1812.

Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The Genomic Landscapes of
Human Breast and Colorectal Cancers. Science. 2007;318(5853):1108–1113.

Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The So-
matic Genomic Landscape of Glioblastoma. Cell. 2013;155(2):462–477.

Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic Mutations
Affect Key Pathways in Lung Adenocarcinoma. Nature. 2008;455(7216):1069–1075.
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Cancer Genome Atlas Research Network. Integrated Genomic Analyses of Ovarian Carcinoma.
Nature. 2011;474(7353):609–615.

Knutsen T, Gobu V, Knaus R, Padilla-Nash H, Augustud M, Strausberg RL, et al. The Interactive
Online SKY/M-FISH & CGH Database and the Entrez Cancer Chromosomes Search Database:
Linkage of Chromosomal Aberrations with the Genome Sequence. Genes, Chromosomes and Can-
cer. 2005;44(1):52–64.

Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1
Mutations in Atypical Chronic Myeloid Leukemia. Nature Genetics. 2013;45(1):18–24.

Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Human
Colon and Rectal Cancer. Nature. 2012;487(7407):330–337.

Diaz-Uriarte, R., & Vasallo, C. (2019). Every which way? On predicting tumor evolution using can-
cer progression models. PLOS Computational Biology, 15(8), 1007246. http://dx.doi.org/10.1371/journal.pcbi.1007246

Diaz-Colunga, J., & Diaz-Uriarte, R. (2021). Conditional prediction of consecutive tumor evolu-
tion using cancer progression models: What genotype comes next? PLoS Computational Biology,
17(12): e1009055. https://doi.org/10.1371/journal.pcbi.1009055

Examples

data(every_which_way_data)
lapply(every_which_way_data, colnames)
lapply(every_which_way_data, dim)

## Run on a piece of one of the above data sets
Dat1 <- every_which_way_data[[16]][1:40, 2:6]
out <- evam(Dat1,

methods = c("OT", "OncoBN",
"MHN"))

ex_mixed_and_or_xor Small example data set that shows, for HESBCN, both AND and OR,
or AND and XOR, in some runs.

Description

Synthetic data set used for testing and plotting. HESBCN, with some seeds, will infer both AND
and OR, or AND and XOR, or the three of them.

Usage

data("ex_mixed_and_or_xor")

Format

A data frame with “genes” in columns and “patients” in rows.
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Examples

data("ex_mixed_and_or_xor")

out_AND_OR_XOR <- evam(ex_mixed_and_or_xor,
methods = c("OT", "HESBCN", "MHN", "OncoBN"),
hesbcn_opts = list(seed = 26))

plot_evam(out_AND_OR_XOR, plot_type = "trans_mat", top_paths = 4)

examples_csd Cross sectional data sets

Description

A list of cross sectional data set to be used as example inputs, for instance by the Shiny web app.
This file was generated by running the script /inst/miscell/examples/toy_datasets.R

Usage

data(examples_csd)

Format

A list of cross sectional data sets. Each data set includes 1) the data and 2) a name. In some cases
there is also dag, or the values of a matrix. A list with 3 items:

csd csd, created by directly entering cross-sectional data.

dag dag, from models with DAGs.

matrix matrix, from MHN.

plot_evam Plot results from EvAMs (CPMs)

Description

Plots fitted EvAMs (CPMs), both fitted model and custom plots for transition rates and transition
probabilities.

Usage

plot_evam(
cpm_output,
samples = NULL,
orientation = "horizontal",
methods = NULL,
plot_type = "trans_mat",
label_type = "genotype",
fixed_vertex_size = FALSE,
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top_paths = NULL
)

plot_CPMs(
cpm_output,
samples = NULL,
orientation = "horizontal",
methods = NULL,
plot_type = "trans_mat",
label_type = "genotype",
fixed_vertex_size = FALSE,
top_paths = NULL

)

Arguments

cpm_output Output from the cpm
samples Output from a call to sample_evam. Necessary if you request plot type transitions.
orientation String. If it is not "vertical" it will be displayed with an horizontal layout. Op-

tional.
methods Vector of strings with the names of methods that we want to plot. If NULL,

all methods with output in cpm_output. The list of available methods is OT,
OncoBN, CBN, MCCBN, MHN, HESBCN.

plot_type One of:
• trans_mat: Transition matrix between genotypes (see supporting informa-

tion for OT and OncoBN). This plots the object of name trans_mat from
the output of evam.

• trans_rate_mat: Transition rate matrix between genotypes; unavailable for
OT and OncoBN. This plots the object of name trans_rate_mat from the
output of evam.

• obs_genotype_transitions: Observed transitions during the simulation of
the sampling process. This plots the object called obs_genotype_transitions
from the output of sample_evam.

label_type Type of label to show. One of:
• genotype: Displays all genes mutated
• acquisition: Only displays the last gente mutated

fixed_vertex_size

Boolean. If TRUE, all nodes with have the same size; otherwise, scale them
proportional to frequencies of observed data.

top_paths Number of most relevant paths to plot. Default NULL will plot all paths. See
below, Description, for details about relevance. With many genes, and particu-
larly for MHN (or other methods, when there are no restrictions in the order of
accumulation of mutations), using NULL can lead to a very long time to plot.

Value

By default this function creates a top row with the DAG of the CPM or the log-Theta matrix for
MHN. The bottom row has a custom plot for the transition matrix, or the transition rate matrix, or
the observed genotype transitions.
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In the bottom row plots, unless fixed_vertex_size = TRUE, the size of genotype nodes is propor-
tional to the observed frequency of genotypes for all plots except for plot_type = 'obs_genotype_transitions',
where it is proportional to the genotype frequency as obtained by the sampling from the predictions
of each method; if a node (genotype) has no observations, its size is of fixed size. Thus, for all plots
except plot_type = 'obs_genotype_transitions' the size of the genotype nodes is the same
among methods, but the size of the genotype nodes can differ between methods for plot_type =
'obs_genotype_transitions'.

In the top plots, in the DAGs, when a node has two or more incoming edges, color depends on the
type of relationship. (With a single incoming edge, there is no difference in model behavior with
type of edge and, for consistency with OT and CBN, nodes with a Single parent have edges colored
the same way as nodes with two or more parents and AND relationship).

In the bottom row plots, non-observed genotypes are shown in light green, to differentiate them
from the observed genotypes (shown in orange).

Note

The color and design of figures in the bottom row, depicting transition matrices, transition rate
matrices, and observed genotype transitions are heavily inspired by (a blatant copy of) some of the
representations in Greenbury et al., 2020.

It is easy to get the plots to display poorly (overlapping names in nodes, overlapping labels between
plots, etc) if you use long gene names. For best results, try to use short gene names.

The criteria to decide which are the most relevant paths with the top_paths option is the following:
1) Get all the leaves from the graph. 2) Calculate all the paths leading from "WT" to all leaves.
3) Select n paths with highest cumulative weighted sum. The weights used depend on the type of
plot (plot_type): for trans_mat it will be log probabilities (so the most relevant paths are the most
likely paths), for trans_rate_mat it will be rates, and for obs_genotype_transitions it will be raw
counts.

Plots can be more readable with a combination of top_paths and label_type. If label_type =
'acquisition' node labels will dissapear and edge label will be shown instead. They will display
the information of the last gene mutated.

plot_CPMs has been deprecated. Use plot_evam.

References

Greenbury, S. F., Barahona, M., & Johnston, I. G. (2020). HyperTraPS: Inferring Probabilistic
Patterns of Trait Acquisition in Evolutionary and Disease Progression Pathways. Cell Systems,
10(1), 39–51–10. http://dx.doi.org/10.1016/j.cels.2019.10.009

Examples

dB_c1 <- matrix(
c(

rep(c(1, 0, 0, 0, 0), 30) #A
, rep(c(0, 0, 1, 0, 0), 30) #C
, rep(c(1, 1, 0, 0, 0), 20) #AB
, rep(c(0, 0, 1, 1, 0), 20) #CD
, rep(c(1, 1, 1, 0, 0), 10) #ABC
, rep(c(1, 0, 1, 1, 0), 10) #ACD
, rep(c(1, 1, 0, 0, 1), 10) #ABE
, rep(c(0, 0, 1, 1, 1), 10) #CDE
, rep(c(1, 1, 1, 0, 1), 10) #ABCE
, rep(c(1, 0, 1, 1, 1), 10) #ACDE
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, rep(c(1, 1, 1, 1, 0), 5) # ABCD
, rep(c(0, 0, 0, 0, 0), 1) # WT

), ncol = 5, byrow = TRUE
)
colnames(dB_c1) <- LETTERS[1:5]

## Use MCCBN only if installed
MCCBN_INSTALLED <- requireNamespace("mccbn", quietly = TRUE)
methods <- c("CBN", "OT", "OncoBN", "MHN", "HESBCN")
if (MCCBN_INSTALLED) {

methods <- c(methods, "MCCBN")
}

out <- evam(dB_c1,
methods = methods)

plot_evam(out, plot_type = "trans_mat")

plot_evam(out, plot_type = "trans_rate_mat")

plot_evam(out, plot_type = "trans_rate_mat", top_paths=2)
plot_evam(out, plot_type = "trans_rate_mat", top_paths=2

, label_type ="acquisition")

out_samp <- sample_evam(out, 1000, output = c("sampled_genotype_counts", "obs_genotype_transitions"))

plot_evam(out, out_samp, plot_type = "obs_genotype_transitions")

## Only showing new gene mutated respect with its parent
plot_evam(out, out_samp, plot_type = "obs_genotype_transitions",

label_type = "acquisition")

plot_evam(out, out_samp, plot_type = "obs_genotype_transitions",
label_type = "acquisition", top_paths = 3)

## Examples with mixed AND and OR and AND and XOR for HESBCN
data("ex_mixed_and_or_xor")

out_AND_OR_XOR <- evam(ex_mixed_and_or_xor,
methods = c("OT", "HESBCN", "MHN", "OncoBN"),
hesbcn_opts = list(seed = 26))

plot_evam(out_AND_OR_XOR,plot_type = "trans_mat",
top_paths = 3)

## Asking for a method not in the output will give a warning
plot_evam(out_AND_OR_XOR, plot_type = "trans_mat",

methods = c("OT", "OncoBN"),
top_paths = 4)

## Only two methods, but one not fitted
plot_evam(out_AND_OR_XOR, methods = c("CBN", "HESBCN"),

plot_type = "trans_mat")
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## Only one method
plot_evam(out_AND_OR_XOR, methods = c("MHN"),

plot_type = "trans_mat",
top_paths = 5)

plot_evam(out_AND_OR_XOR, plot_type = "trans_mat", top_paths = 3)

plot_evam(out_AND_OR_XOR, methods = c("MHN", "HESBCN"),
plot_type = "trans_mat", label_type="acquisition"
, top_paths=3)

plot_evam(out_AND_OR_XOR, methods = c("MHN", "HESBCN"),
plot_type = "trans_mat", label_type="genotype"
, top_paths=3)

random_evam Generate a random EvAM model.

Description

Generate random EvAM (CPM) models.

Usage

random_evam(ngenes = NULL,
gene_names = NULL,
model = c("OT", "CBN", "HESBCN",

"MHN", "OncoBN"),
graph_density = 0.35,
cbn_hesbcn_lambda_min = 1/3,
cbn_hesbcn_lambda_max = 3,
hesbcn_probs = c("AND" = 1/3,

"OR" = 1/3,
"XOR" = 1/3),

ot_oncobn_weight_min = 0,
ot_oncobn_weight_max = 1,
ot_oncobn_epos = 0.1,
oncobn_model = "DBN"
)

Arguments

ngenes Number of genes in the model. Specify this or gene_names.

gene_names Gene names.Specify this or ngenes.

model One of OT, CBN, OncoBN, MHN, HESBCN.

graph_density Expected number of non-entries in the adjacency matrix (all methods expect
MHN) or the theta matrix (MHN). See details.

cbn_hesbcn_lambda_min

Smallest value of lambda for CBN and HESBCN.
cbn_hesbcn_lambda_max

Largest value of lambada for CBN and HESBCN.
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hesbcn_probs For nodes with more than one ancestor, the probability that the dependencies are
AND, OR, XOR. You must pass a named vector.

ot_oncobn_weight_min

Smallest possible value of the weight or theta for OT and OncoBN respectively.
ot_oncobn_weight_max

Largest possible value of the weight or theta for OT and OncoBN respectively.=
1,

ot_oncobn_epos

epsilon (OncoBN) or epos (OT) error.

oncobn_model One of "DBN" or "CBN".

Details

The purpose of this function is to allow easy simulation of data under a specific model. Details
follow for specific models, with explanation of parameters.

For MHN we use the same procedure as available in the original code of Schill et al. graph_density
is 1 - sparsity. A matrix of random thetas (from a normal 0, 1, distribution) is generated, where
the number of non-zero entries is controlled by graph_density.

For CBN a random poset is generated by calling random_poset in the mccbn package (func-
tion exported but not documented) and generating random lambdas uniformly distributed between
cbn_hesbcn_lambda_min and cbn_hesbcn_lambda_max. No specific provision is made for ran-
domly generating from MCCBN, as the way to simulate is similar to CBN (but see also the addi-
tional documentation for details about the error models).

For H-ESBCN we follow a similar procedure as for CBN, but nodes that have two or more par-
ents are then assigned, at random, a relationship that can be AND, OR, or XOR, as given by
hesbcn_probs.

For OT we use a procedure similar to the one for CBN, but edge weights are uniformly distributed
between ot_oncobn_weight_min and ot_oncobn_weight_max. Since under OT a node can have
only one parent, for all nodes that have two or more parents, we randomly keep one of the par-
ents. Thus, graph_density is often larger than the actual number of non-zero connections in the
adjacency matrix.

For OncoBN we do as for CBN. If you specify oncobn_model to be DBN, all dependencies on two
or more parents are OR dependencies; if you specify CBN, dependencies are AND dependencies.
As for OT, thetas are uniformly distributed between ot_oncobn_weight_min and ot_oncobn_weight_max.

For both OT and OncoBN model, ot_oncobn_epos controls the probability that a gene can mutate if
its requirements are not satisfied. (This is thus intrinsic to the model, and independent of observation
error; see next).

In all cases, the predicted distribution of genotypes for a model is done assuming perfect compliance
with the model. See the additional documentation for details about the error models. Adding
observation error can be done using obs_error > 0 when calling sample_evam.

Value

Random model, with the same structure as returned by function evam. Thus, a named list with all
the returned entries from evam for a given method.

See Also

sample_evam
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Examples

rmhn <- random_evam(model = "MHN", ngenes = 5)
rcbn <- random_evam(model = "CBN", ngenes = 5,

graph_density = 0.5)

## Now, obtain some data
## You can obtain a random sample, with counts of frequencies of
## genotypes and add observation noise
sample_mhn <- sample_evam(rmhn, N = 1000, obs_noise = 0.05)

## The component sampled_genotype_counts_as_data is
## a matrix that you can then pass to evam as the
## input data argument (x)

runShiny Run the web application of evamtools

Description

Launch the server with the web based app.

Usage

runShiny(host="0.0.0.0", port=3000, test.mode = FALSE)

Arguments

host Host where the app will be listening

port Port where the app will be listening

test.mode See runApp

sample_evam Obtain samples of genotypes from the EvAM (CPM) models and, op-
tionally, counts of genotype transitions.

Description

Obtain samples of genotypes from the CPM models and, optionally, counts of genotype transitions.

For OT and OncoBN we always obtain the absolute genotype frequencies by drawing samples of
size N, with replacement, using as probabilities the predicted genotype frequencies.

For the remaining methods, that is also what we do, unless you request also obs_genotype_transitions
and state_counts. In this case, since we need to simulate sampling from the continuous-time Markov
Chain (with transition rates given by the transition rate matrix) to obtain state counts and observed
genotype transitions, we use this same sampling to obtain the absolute genotype frequencies. (The
results are, of course, equivalent, but sampling directly from the predicted frequencies is much
faster). Note that the option to request obs_genotype_transitions was removed from the web app,
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as it was rarely used, but lead to confusion and could increase without good reason running times.
So, from the web app, we sample without using obs_genotype_transitions.

Observed genotype transitions, if requested, are obtained by counting the transitions between pairs
of genotypes when simulating from the continuous-time Markov Chain. State counts are also ob-
tained by counting from this process how many times a genotype was visited.

Usage

sample_evam(cpm_output, N,
methods = NULL,
output = c("sampled_genotype_counts"),
obs_noise = 0,
genotype_freqs_as_data = TRUE

)

sample_CPMs(cpm_output, N,
methods = NULL,
output = c("sampled_genotype_counts"),
obs_noise = 0,
genotype_freqs_as_data = TRUE

)

Arguments

cpm_output Output from calling all_methods2trans_mat

N Number of samples to generate

methods Vector of strings with the names of methods that we want to sample. If NULL,
all methods with output in cpm_output. The list of available methods is OT,
OncoBN, CBN, MCCBN, MHN, HESBCN.

output A vector with one or more of the following possible outputs: sampled_genotype_counts,
obs_genotype_transitions, state_counts. Even if requested, obs_genotype_transitions
and state_counts are not available for OT and OncoBN.

obs_noise When obtaining a sample, should we add observation noise (for example, geno-
typing error) to the data? If larger than 0, this obs_noise proportion of entries
in the sampled matrix will be flipped (i.e., 0s turned to 1s and 1s turned to 0s).

genotype_freqs_as_data

If TRUE, return a matrix where each row is a "sampled genotype", where 0
denotes no alteration and 1 alteration in the gene of the corresponding column.

Value

A list, with a many entries as methods times number of components requested. For each method
among CBN, MCCBN, HESBCN, and MHN:

• sampled_genotype_counts: Counts, or absolute genotype frequencies, obtained by sampling
from the predicted frequencies. See also Description, below.

• obs_genotype_transitions: Number of observed transitions between genotypes (as a sparse
matrix).

• state_counts: Number of times each genotype was visited during the transitions. Column sums
of observed genotype transitions are equal to state counts.
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• sampled_genotype_counts_as_data: The genotypes in a matrix of 0/1. This can directly be
passed as an argument for evam, as the input data.

Observed genotype transitions are not the way to obtain estimates of transition probabilities. The
transition probabilities given by each method are already available from the output of evam itself.
These genotype transitions are the observed transitions during the simulation of the sampling pro-
cess and, thus, have additional noise.

For OT and OncoBN, only the sampled_genotype_counts and sampled_genotype_counts_as_data
components are available (the other two are not available).

Note

sample_CPMs has been deprecated. Use sample_evam.

See Also

random_evam

Examples

data(every_which_way_data)
Dat1 <- every_which_way_data[[16]][1:40, 2:6]
## For faster execution, use only some methods
out <- suppressMessages(evam(Dat1,

methods = c("CBN", "OT", "OncoBN",
"MHN")))

## Sample from the predicted genotype frequencies
## only for OT
outS1_ot <- sample_evam(out, N = 1000, methods = "OT")

## Sample from the predicted genotype frequencies
## for OT and HESBCN. But the later was not in the output
## so we get a warning-
outS1_ot_2 <- sample_evam(out, N = 1000, methods = c("OT", "HESBCN"))

## Sample from the predicted genotype frequencies
## for all methods in the output out

outS1 <- sample_evam(out, N = 1000)

## Same, but adding observation error
outS1e <- sample_evam(out, N = 1000, obs_noise = 0.1)

## Only CBN and will simulate sampling from the transition
## rate matrix.

outS2 <- sample_evam(out, N = 1000, methods = "CBN",
output = "obs_genotype_transitions")

## No output available for OT
## For CBN and MHN simulate from the transition rate matrix

outS3 <- sample_evam(out, N = 1000, methods = c("CBN", "OT", "MHN"),
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output = c("obs_genotype_transitions",
"state_counts"))

## OT sampled from the predicted genotype frequencies
## No obs_genotype_transitions available for OT
## CBN and OT simulate from the transition rate matrix, for consistency

outS4 <- sample_evam(out, N = 1000, methods = c("CBN", "OT", "MHN"),
output = c("obs_genotype_transitions",

"sampled_genotype_counts"))

## Only CBN, will simulate sampling from the transition
## rate matrix and add observation error to the genotype frequencies.

outS5 <- sample_evam(out, N = 1000, methods = "CBN",
output = c("obs_genotype_transitions", "sampled_genotype_counts"), obs_noise = 0.1)

SHINY_DEFAULTS Defaults options for running the shiny web app

Description

Defaults of the web app. This file was generated by running the script /inst/shiny-examples/evamtools/DEFAULTS.R

You will want to rerun it (so that the RData file is created again) whenever you make changes to it.

The object is called .ev_SHINY_dflt to minimize the risk of overwriting.

Usage

data(SHINY_DEFAULTS)

Format

Defaults values of the shiny app

max_genes Maximun number of genes allowed
min_genes Minimum number of genes allowed
ngenes Integer of default number of genes to use when building
cpm_samples Number of patients to samples to generate csd data from a matrix using with CPM

outputs
all_cpms All CPMs in evamtools
csd_samples Number of patients to samples to generate csd data from a matrix or a dag
template_data One of:

• csd_counts:Data frame with the counts of each genotype
• data:Data frame with cross sectional data.
• dag:Matrix of 10x10 with lambdas
• dag_parent_sest:List of 10 elements with "Single"
• lambdas:Vector of 10 lambdas, equals to 1
• thetas:Matrix of 10x10 with thetas
• gene_names:List with gene names
• name:String with the data set name
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1 Introduction

Here I explain how we can use OncoSimulR1 to get accessible genotypes and transition matrices
for CBN (and MCCBN), OT, HESBCN, and OncoBN. The code for using OncoSimulR is
implemented in access_genots_from_oncosimul.R.

1A BioConductor package for forward population genetic simulation in asexual populations; it allows us
to specify fitness, among other ways, using DAGs of restrictions. Repo at https://github.com/rdiaz02/
OncoSimul. Citation: Diaz-Uriarte, R. (2017). OncoSimulR: Genetic simulation with arbitrary epistasis
and mutator genes in asexual populations. Bioinformatics, 33(12), 1898–1899. https://doi.org/10.1093/
bioinformatics/btx077.
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(This document is written, on purpose, using an itemized list style, with plenty of repetition
and detailed examples, to make it suitable for instance for class use.)

2 Using OncoSimulR to get accessible genotypes and transition
matrices

OncoSimulR has had, for a long time, the AND, XOR, OR operations (see the help of "allFit-
nessEffects", under "typeDep"), if a gene depends on other genes with the same relationship
for all parents. Since we can obtain the fitness of genotypes, obtaining accessible genotypes is
simple:

• Use an appropriate setting for the "s"

• Use −∞ for sh (so if restrictions are not satisfied, a genotype has fitness 0).

• Evaluate the fitness of genotypes.

• Call function "genots_2_fgraph_and_trans_mat".

– This is a general function, not linked to any specific cancer progression model. In
other words, given a fitness landscape (a mapping from genotypes to fitness) find
the accessible genotypes and the transition matrices (not transition rate matrices)
between genotypes.

– For example, this procedure does not assume that mutations that do not kill a
genotype always increase fitness or at least do not decrease it. A mutation might
increase fitness in some contexts (with some other mutations) and decrease in other
contexts, such as with sign and reciprocal sign epistasis.

– This procedure assumes SSWM (strong selection, weak mutation). Moreover,
we assume evolution can only move uphill in fitness. For example, a genotype
is considered not accessible if its fitness is less than, or equal to (note the “or equal
to”) that of its immediate ancestor, and we cannot cross fitness valleys2.

– This function returns accessible genotypes, fitness graph, and transition matrices
directly from the fitness of the genotypes.

2.1 Computing fitness of genotypes: for CBN (and MCCBN) and OT

• OncoSimulR, when using DAGs, uses a model of fitness (birth rate), for a genotype with
restrictions satisfied as Π(1 + si).

– Again, to emphasize the above: si, when using OncoSimulR with a DAG, is the
selection coefficient from gene i with its restrictions satisfied.

• Recall that for CBN the transition probabilities can be computed from competing expo-
nentials. For example, suppose from genotype A we can go to enotypes AB and AC. The
probability of going to AB should be λB/(λB + λC).

• As in p. 7 of the supplementary material of Weinreich et al., 2006, (Weinreich, D.
M., Delaney, N. F., DePristo, M. A., & Hartl, D. L. (2006). Darwinian Evolution
Can Follow Only Very Few Mutational Paths to Fitter Proteins. Science, 312(5770),

2This excludes, for example, the scenarios studied in Weinreich, D. M., & Chao, L. (2005). Rapid evolutionary
escape by large populations from local fitness peaks is likely in nature. Evolution; international journal of organic
evolution, 59(6), 1175–1182. http://dx.doi.org/10.1111/j.0014-3820.2005.tb01769.x .
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111–114.https://dx.doi.org/10.1126/science.1123539), let us define the selective co-
efficient of a mutation i as the relative fitness difference that it causes along the mutational
pathway.

– WAB = WA (1 + sB) or sB = WAB−WA
WA

.

– Using our previous example, Pr(A → AB) = WAB−WA
(WAB−WA)+(WAC−WA) , where Wx is

fitness of genotype x.
– Thus, we get from the above Pr(A → AB) = sB

sB+sC
.

– (We wrote WAB = WA (1+sB). This we can do as we explained what the meaning of
the si are: selection coefficient from gene i with its restrictions satisfied. See below:
Transition probabilities using an epistatic specification.)

• Note that this is the same procedure as in Weinreich et al., 2006, (Weinreich, D. M.,
Delaney, N. F., DePristo, M. A., & Hartl, D. L. (2006). Darwinian Evolution Can Follow
Only Very Few Mutational Paths to Fitter Proteins. Science, 312(5770), 111–114.https:
//dx.doi.org/10.1126/science.1123539) supplementary material, p. 4): si→j "the
selection coefficient for the mutation that carries allele i to allele j"3.

• Specifically, see equation S5b in the supplementary material of Weinreich et al., 2006,
which shows the relationship between the expected value of the conditioned probability
of fixation in a mutation from i to j and the expected value of the ratio of the selection
coefficient for the mutation that turns i to j over the sum of selection coefficients of
beneficial mutations that turn i into all other alleles; see also their figure S1 in p. 7 of the
supplementary material that shows the accuracy of their expression.

• Note that this is similar to what is done in Hosseini et al., 2019 (Hosseini, S., Diaz-
Uriarte, Ramon, Markowetz, F., & Beerenwinkel, N. (2019). Estimating the predictability
of cancer evolution. Bioinformatics, 35(14), 389–397. https://dx.doi.org/10.1093/
bioinformatics/btz332), p. i392. The difference is that in Hosseini et al. the si is
defined as the fitness difference, not the relative fitness difference (and in Hosseini et al
there is a normalizing constant, as given by eq. 8).

• Additional note: In Gerstung et al., 2011 (Gerstung, M., Eriksson, N., Lin, J., Vogelstein,
B., & Beerenwinkel, N. (2011). The Temporal Order of Genetic and Pathway Alterations
in Tumorigenesis. PLoS ONE, 6(11), 27136. https://dx.doi.org/10.1371/journal.
pone.0027136), PLoS ONE (p.8) the relationship between λi and si is also discussed,
with additional references given.

• So when using OncoSimulR we do as follows:

– Set si = λi (for OT, we use edgeWeight instead of λ).
– Obtain the fitness of all genotypes from OncoSimulR.
– If so desired (e.g., to ensure the maximum fitness is a specific number), scale all

fitnesses by the appropriate factor (that also ensures that WT is kept at one; see,
for instance, function scale_fitness_2 in file access_genots_from_oncosimul.R.

• Is the above correct for OT? Strictly not as OT are untimed oncogenetic trees. (And,
yes, we are aware that under OT if you have, say, both A and B descend from root, the
probability of genotype A is pa(1− pb)).

3Selection coefficient has the usual textbook definition. For example, Gillespie, 2004 (Population genetics:
a concise guide, 2nd. Baltimore, Md: The Johns Hopkins University Press.), p. 63. But here we write
WAB = WA (1 + sB), and thus if sB > 0 AB is fitter than A; see also p.7 of the supplementary material of
Weinreich et al., 2006
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• It is important to emphasize that we are not claiming λi should be taken as equal to si.
We are using this procedure to obtain accessible genotypes and transition probabilities
between genotypes, but not transition rate matrices. For example, as mentioned above,
multiplying all si by the same constant leaves these transition probabilities unchanged4.
But even if multiples of the λi result in the same transition probabilities, the transition
rate matrices are different (the evolutionary process is faster or slower).

2.2 Crucial assumption above

• We compute fitness above assuming that only one of two things can happen: a mutation
provides a fitness benefit or it leads to death. When the requirements are satisfied, a
mutation conveys a fitness increase (λi); otherwise, the cell with the mutation has fitness
0.

• Strictly, mutations without dependencies satisfied might not be lethal, but they should
not confer any fitness advantage, so that we will not observe them become fixated in the
population (Gerstung et al., 2009, p. 2810: "(. . . ) mutations that need to be present before
mutation i can fixate.". Gerstung and Beerenwinkel, 2010, Waiting time models of cancer
progression. Mathematical Population Studies, 17, 115–135; p. 126: "with steps including
both mutation and clonal expansion occurring at effective rates λj". Beerenwinkel, N.,
& Sullivant, S. (2009). Markov models for accumulating mutations. Biometrika, 96(3),
645, p. 659: “In an evolutionary process, this waiting time includes the generation of the
mutation plus the time it takes for the allele to reach fixation in the population” and p. 660
“The parameters λ correspond to the rate of evolution, i.e. the product of population size,
mutation rate and fixation probability”).

• In OncoSimulR, in addition to the si, it is possible to set sh = 0, meaning there is
no penalty for not respecting the restrictions. When sh = 0 there is also no fitness
gain, either, so fitness for those genotypes ends up being the fitness of the immediate
parent (there is no contribution from the gen without restrictions satisfied to the fitness
of the parent genotype). Regardless, when sh = 0, the transition matrix does not change
compared to the transition matrix we obtain if we assume that mutations to genotypes
with non-satisfied dependencies lead to a fitness of 0: we said above that a genotype is
considered not accessible if its fitness is less than, or equal to (note the “or equal to”) that
of its immediate ancestor.

• To elaborate on this point: The output from the code, with sh = 0, will result in more
genotypes being shown as accessible. It is arguable, though, that those genotypes are not
really accessible, since their fitness is never larger than the fitness of their ancestor. So
the probability of transitioning to them will be 0 under the expressions above when in
SSWM. We have changed the code so that now something is only shown as accessible if
its fitness is strictly larger than the fitness of its ancestor.

• (Actually, in OncoSimulR, the sh can vary by gene, so we could have different shi, but
this does not affect these arguments).

2.3 Fitness specification with OncoSimulR: DAGs vs. epistatic fitness spec-
ifications

• We said above: "Again, to emphasize the above: si, when using OncoSimulR with a DAG,
is the selection coefficient from gene i with its restrictions satisfied."

4We can scale all fitness with a function like W ∗ = 1 + (W − 1) α.
WA = 1 + sA. W ∗

A = 1 + s∗A. Thus s∗A = (WA − 1) α = sA α.
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• This also means, when using DAGs in OncoSimulR, that terms such as sij are not used
in that specification: they are not needed as the DAG models do not include epistasis
beyond that given by the DAG, and all these epistatic interactions we capture with the
DAG and the si and sh, which denote the fitness effects when restrictions are satisfied
and not satisfied, respectively.

• But with OncoSimulR you can also specify fitness with the usual multiplicative expression
where you specify explicitly the contribution of genes and gene interactions (e.g., sij for
the effect of the interaction between genes i and j, so that fitness of the genotype with
both i and j mutated would be (1 + si) (1 + sj) (1 + sij)).

• In other words, suppose j depends on i. The usual epistatic interaction fitness specification
would write: Wij = (1 + si) (1 + sj) (1 + sij) and Wj = (1 + sj).

• Using the DAG, if the restriction is not satisfied, i.e., for genotype with only j: Wj =
(1 + sh). If the restriction is satisfied, Wij = (1 + si)(1 + sj). So the meaning of the s is
different.

• To fully elaborate here, and to give a more complex example, suppose C depends on both
A and B, according to the DAG.

– When using the DAG, then, these are the expressions for some genotypes:

∗ WABC = (1 + sA)(1 + sB)(1 + sC)

∗ WAC = (1 + sA)(1 + sh)

∗ (If we had gene-specific sh, such as shC , that does not change anything funda-
mental, just adds a subscript)

– If we were to use an epistatic specification:

∗ WABC = (1 + sA)(1 + sB)(1 + sC)(1 + sAB)(1 + sAC)(1 + sBC)(1 + sABC)

∗ WAC = (1 + sA)(1 + sC)(1 + sAC)

• Therefore, the meaning of the si is not the same under both specifications. That is why we
said "si, when using OncoSimulR with a DAG, is the selection coefficient from gene i with
its restrictions satisfied." and "terms such as sij are not used in that specification:
they are not needed as the DAG models do not include epistasis beyond that given by
the DAG, and all these epistatic interactions we capture (. . . )".

• Yes, sure, we could always re-write the si and shi in the DAG specification as a function
of the si, sij , sijk in the epistatic specification. (See section Transition probabilities using
an epistatic specification).

• This was just for the sake of completeness. The use of sh and the epistatic fitness spec-
ification is fully explained in the documentation of OncoSimulR and its vignette, and is
not in the scope of this document.

2.4 Transition probabilities using an epistatic specification

• Suppose B and C both depend on A. If we were to use an specification with epistasis,
instead of how we have used and interpreted the si using the DAGs, then we would have
to write WAB = WA (1 + s∗B) (1 + s∗AB), where now I am using s∗ to make the sets
of s clearly distinct. We can express the sB as a function of s∗B and s∗AB. If we set
s∗B = 0 (similar to setting sh = 0) then sB = s∗AB. Otherwise, the expression will be
sB = ((1 + s∗B) (1 + s∗AB)) − 1; and, to respect the restrictions, it must be the case that
s∗B < 0.
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• The expressions for probabilities of transition become messier, but you end up with a
ratio of

increase_in_fitness_from_acquiring_B

increase_in_fitness_from_acquiring_B + increase_in_fitness_from_acquiring_C

where increase_in_fitness_from_acquiring_B would include the effect of B, s∗B, and
the epistatic interaction, s∗AB.

• sB is still the relative fitness difference WAB−WA
WA

. Which is the same as saying that
((1 + s∗B) (1 + s∗AB))− 1 = WAB−WA

WA
is the relative fitness difference.

• This shows we can directly use the DAG fitness specification where we take the si as the
selection coefficient from gene i with its restrictions satisfied.

• And why do we do what we do with CBN? Because it simplifies everything and fitness
can be written as

∏
(1 + si) for any genotype with its restrictions satisfied.

– If neither A nor B depend on anything, then the expression for fitness is (1+sA) (1+
sB) because, under CBN, there is no epistasis here so sAB = 0 (look, for example,
at the transition rate matrix in Montazeri et al., 2016, Figure 1, for the transition
from genotype 1 to genotype 1,2 or from genotype 2 to genotype 1,2).

– If B depends on A, when we consider the transition from A to B, we can use a single
term, (1+ sX) to multiply (1+ sA), and that sX = λB. That λB is the (relative) in-
crease in fitness due to B, when B’s restrictions are satisfied (for example, in Example
1 in Montazeri et al., 2016 (Large-scale inference of conjunctive Bayesian networks.
Bioinformatics, 32(17), 727–735. https://dx.doi.org/10.1093/bioinformatics/
btw459), see the transition rate matrix from genotype 2 to genotype 2,45). You
can think of this sX as the joint combination of the effect of B on its own and the
epistasis of A and B; but thinking of B on its own is a moot point, since B on its
own (i.e., without A, without its restrictions satisfied) is not a genotype that can be
observed.

– Thus, for any genotype, do
∏
(1 + si), where si = λi when the restrictions are

satisfied.

2.4.1 Another example about the relationship between s, λ, sh

• Remember that having λi < 0 makes no sense.

• Suppose a model where A and B depend on no one, D depends on A and C depends on
both A and B.

• Simple case:

– WAD = (1 + λA)(1 + sD)(1 + sAD)

– WAD = (1 + λA)(1 + λD)

– So: 1 + sAD = 1+λD
1+sD

– If sD = 0 we get the sAD = λD or "the epistatic term is equal to the lambda".

– If sD < 0 then the epistatic term, sAD > λD: it has to be large enough to compensate
for the decrease in fitness from the single D.

5Notice that Figure 1 is correct, but the matrix in Example 1 has a typo, and is missing the entry for λ4; or
look at the transition from 1,2 to 1,2,3 and 1,2,4
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– This can matter if we try to generate sxy... from some distribution and match them
to the λ.

• Beware, though, of a simple interpretation of the sD as sh, specially when there are more
genes. An example:

– WADC = (1 + λA)(1 + sD)(1 + sAD)(1 + sC)(1 + sDC)(1 + sAC)(1 + sACD)

– But we can replace the second and third terms:

∗ WADC = (1 + λA)(1 + λD)(1 + sC)(1 + sDC)(1 + sAC)(1 + sACD)

– OncoSimulR is NOT replacing all the extra terms by sh.

∗ If it did you would get:
· WADC = (1 + λA)(1 + λD)(1 + sh)

4

∗ But what OncoSimul actually gives you is:
· WADC = (1 + λA)(1 + λD)(1 + sh)

∗ Why? Because only one gene, C, has not got its restrictions satisfied.
∗ In other words, the number of (1+sh) is equal to the number of genes (not genes

and gene combinations) with their restrictions not satisfied.

– In particular, note that this is not correct:

∗ WADC = (1 + λA)(1 + sh)(1 + sAD)(1 + sh)(1 + sh)(1 + sh)(1 + sh)

∗ Where the first sh would correspond to sD and the rest to C, AC, DC, ACD.
∗ And thus, it is not correct to write: 1 + sAD = 1+λD

1+sh

– Of course, if sh < 0 then WADC < WAD.

• And with this same DAG, we can write either:

– WABC = (1 + λA)(1 + λB)(1 + λC)

– WABC = (1 + λA)(1 + λB)(1 + sC)(1 + sAC)(1 + sBC)(1 + sABC)

– As before we could do: (1 + sABC) =
1+λC

(1+sC)(1+sAC)(1+sBC)

– And this shows again that the epistatic term for ABC (i.e., when restrictions are
satisfied) might have to be very large to compensate for large negative fitness effects
of mutations without restrictions satisfied (e.g., sC).

3 What about H-ESBCN/PMCE, with AND, XOR, OR?

By H-ESBCN/PMCE I mean the method described in

• Angaroni, F., Chen, K., Damiani, C., Caravagna, G., Graudenzi, A., & Ramazzotti,
D. (2021). PMCE: efficient inference of expressive models of cancer evolution with
high prognostic power. Bioinformatics, 38(3), 754–762. http://dx.doi.org/10.1093/
bioinformatics/btab717

We can repeat what we did above, with OR and XOR replaced by, well, OR and XOR in
OncoSimulR (OR and XOR are also called SM and XMPN in OncoSimulR). OncoSimulR has
dealt with OR, XOR, AND, and mixtures of them since many years ago. Remember also that
in the H-ESBCN model if a gene depends on a set of genes, it has the same type of dependency
on all the genes of that set.
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4 OncoBN

What about OncoBN, the method described in Nicol, P. B., Coombes, K. R., Deaver, C.,
Chkrebtii, O., Paul, S., Toland, A. E., & Asiaee, A. (2021). Oncogenetic network estimation
with disjunctive Bayesian networks. Computational and Systems Oncology, 1(2), 1027. http:
//dx.doi.org/10.1002/cso2.1027?

OncoBN can fit both conjunctive (AND) and disjunctive (OR, not XOR) models; for the
first you specify model = “CBN” and for the second model = “DBN”. So it resembles CBN and
HESBCN. However, the θs returned by OncoBN are not rates, as in CBN, HESBCN, or MHN,
but rather probabilities of seeing specific alterations at the time of observation as in OT. So
probably a better way to think of OncoBN is as an extension of OT, where nodes can have
multiple parents, and the relationship of dependence can be AND or OR (but not both).

We deal with OncoBN as with any other method, but as we do with OT, we do not interpret
the parameters as rates. This also means that our transition matrices (again, transition matri-
ces, not transition rate matrices: no transition rate matrices are returned for OT or OncoBN),
as for OT, are really an abuse of the untimed oncogenetic model.

When using OncoSimulR to represent OncoBN models, there is nothing new. If OncoBN
was fitted specifying “CBN”, we use ANDs, if it used “DBN” we use ORs when computing
fitness.

5 MHN

MHN has been described in Schill, R., Solbrig, S., Wettig, T., & Spang, R. (2020). Modelling
cancer progression using Mutual Hazard Networks. Bioinformatics, 36(1), 241–249. http:
//dx.doi.org/10.1093/bioinformatics/btz513.

We cannot use OncoSimulR as for the rest of the modes, because the MHN model is
rather peculiar if taken at face value as an evolutionary model (see Diaz-Colunga, J., & Diaz-
Uriarte, R (2021). Conditional prediction of consecutive tumor evolution using cancer pro-
gression models: What genotype comes next? PLOS Computational Biology, 17(12), 1009055.
http://dx.doi.org/10.1371/journal.pcbi.1009055 ; in particular, see section 1.7 of the Supporting
Information: https://doi.org/10.1371/journal.pcbi.1009055.s001).

To express MHN in terms of fitness of genotypes, we would need to express it as a model
where order of acquisition of mutations matters. This is possible with OncoSimulR6, but it does
not provide any additional intuition, and can lead to a huge number of fitnesses for a genotype
(a genotype with k mutated loci could possibly have k! different fitnesses, one for each of its k!
different ways of mutation its k loci).

6 Benefits of this exercise with OncoSimulR

• We make the fitness model explicit.

• We can double check the code in evamtools for obtaining fitness graphs and transition
probabilities as some critical computations are being done with very different code.

7 License and copyright

This work is Copyright, ©, 2021, Ramon Diaz-Uriarte.
6We would need to use “order effects” for the fitness specification. See the vignette for OncoSimulR

https://rdiaz02.github.io/OncoSimul/OncoSimulR.html#36_Order_effects, and the help for function
allFitnessEffects.
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Like the rest of this package (EvAM-Tools), this work is licensed under the GNU Affero
General Public License. You can redistribute it and/or modify it under the terms of the GNU
Affero General Public License as published by the Free Software Foundation, either version 3
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this
program. If not, see https://www.gnu.org/licenses/.

The source of this document and the EvAM-Tools package is at https://github.com/
rdiaz02/EvAM-Tools.
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Supported by grant PID2019-111256RB-I00 funded by MCIN/AEI/10.13039/501100011033 and
Comunidad de Madrid’s PEJ-2019-AI/BMD-13961 to R. Diaz-Uriarte.
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