
Package ‘evamtools’
April 14, 2023

Type Package

Title Tools for evolutionary accumulation models or event accumulation
models (evam), for now mainly cancer progression models

Version 2.1.16

Date 2022-12-08

Author Ramon Diaz-Uriarte [aut, cre]
Pablo Herrera-Nieto [aut]
Daniele Ramazzotti [ctb],
Rudolf Schill [ctb],
Hesam Montazeri [ctb],
Susana Posada-Cespedes [ctb].

Maintainer Ramon Diaz-Uriarte <r.diaz@uam.es>

Description Wrappers to run cancer progression models (CPMs) on
cross-sectional data, including Conjuntive Bayesian Networks (CBN ---and their MC-CBN ver-
sion---), Oncogenetic trees (OT), Mutual Hazard Networks (MHN), Hidden Extended Suppes-
Bayes Causal Networks (H-ESBCNs ---PMCE---), and Disjunctive Bayesian Net-
works (DBN, from the OncoBN package). Tools to represent, graphically, the fitted mod-
els (DAGs of restrictions or matrix of hazards, as appropriate), the transition matrices and transi-
tion rate matrices (where appropriate) between genotypes and to show frequencies of geno-
types sampled from the fitted models. Functions to sample from the fitted models or from ran-
dom models to facilitate comparing different methods. An interactive Shiny web app al-
lows users to easily visualize the effects of changes in genotype composition and to interac-
tively modify and create datasets from models defined from scratch.

URL https://github.com/rdiaz02/EvAM-Tools

BugReports https://github.com/rdiaz02/EvAM-Tools/issues

Depends R (>= 4.0.0)

License AGPL-3 + file LICENSE

Encoding UTF-8

LazyData true

Imports igraph, OncoSimulR, stringr, Matrix, parallel, Oncotree ,
gtools, stringi , plot.matrix , DT, shinyjs, shiny , OncoBN ,
RhpcBLASctl , Rlinsolve, fastmatrix , graph, Rgraphviz ,
R.utils , plotly , magrittr , dplyr , tippy , relations

Suggests testthat (>= 3.0.0)

Enhances mccbn

1

https://github.com/rdiaz02/EvAM-Tools
https://github.com/rdiaz02/EvAM-Tools/issues

2 evam

Config/testthat/parallel true

Config/testthat/edition 3

NeedsCompilation yes

R topics documented:
evam . 2
evamtools-deprecated . 8
every_which_way_data . 9
ex_mixed_and_or_xor . 10
examples_csd . 11
plot_evam . 11
random_evam . 15
runShiny . 17
sample_evam . 17
SHINY_DEFAULTS . 20

Index 21

evam Runs the CPMs (or evams)

Description

Executes all CPMS given a cross sectional data set.

Usage

evam(x,
methods = c("CBN", "OT", "HESBCN", "MHN", "OncoBN", "MCCBN"),
max_cols = 15,
cores = detectCores(),
paths_max = FALSE,
mhn_opts = list(lambda = 1/nrow(x),

omp_threads = ifelse(cores > 1, 1, detectCores())),
ot_opts = list(with_errors_dist_ot = TRUE),
cbn_opts = list(

omp_threads = 1,
init_poset = "OT"

),
hesbcn_opts = list(

MCMC_iter = 100000,
seed = NULL,
reg = c("bic", "aic", "loglik"),
silent = TRUE

),
oncobn_opts = list(

model = "DBN",
algorithm = "DP",
k = 3,
epsilon = min(colMeans(x)/2),

evam 3

silent = TRUE
),

mccbn_opts = list(
model = "OT-CBN",
tmp_dir = NULL,
addname = NULL,
silent = TRUE,
L = 100,
sampling = c("forward", "add-remove",

"backward", "bernoulli", "pool"),
max.iter = 100L,
update.step.size = 20L,
tol = 0.001,
max.lambda.val = 1e+06,
T0 = 50,
adap.rate = 0.3,
acceptance.rate = NULL,
step.size = NULL,
max.iter.asa = 10000L,
neighborhood.dist = 1L,
adaptive = TRUE,
thrds = 1L,
verbose = FALSE,
seed = NULL)

)

Arguments

x cross sectional data

methods Methods to use. A vector with one or more of the following strings, “OT”,
“OncoBN”, “CBN”, “MCCBN”, “MHN”, “HESBCN”.

max_cols Maximum number of columns to use in the analysis. If x has > max_cols, se-
lected columns are those with the largest number of events.

cores If larger than 1, use mclapply to run all methods. This is the default. If you use
mclapply, MHN and MCCBN should not use OMP (i.e., the number of threads
for OMP for MHN and MCCBN should be 1).

paths_max If TRUE, return all paths to the maxim/maxima, with their probabilities. See
details for how they are computed.

mhn_opts A list with two named arguments.

• lambda: The penalty for MHN. Defaults to 1/nrow(data). (These are not
the lambdas as the estimated parameters for the rates of the continuous-
time Markov chains for MHN or CBN or HESBCN.)

• omp_threads: Number of OMP threads for MHN. Do not pass thrds > 1
with cores > 1: as with MCCBN, do not use OpenMP threads from forked
process from mclapply.

ot_opts A list with the single named argument with_errors_dist_ot: value for option
with with.errors in the call to distribution.oncotree. A value of TRUE
means to incorporate the false positive and negative errors when returning the
probabilities of genotypes under OT. Note that for large models using a value of
TRUE can result in very long computing times. Default is TRUE.

4 evam

cbn_opts A named list with arguments passed to CBN.

• omp_threads: OMP threads to be used by CBN (set via the environment
variable OMP_NUM_THREADS). Defaults to 1. In contrast to MCCBN
and MHN, you can set this to a number larger than one even if you set cores
to a number larger than one (i.e., if we use mclapply). It is unclear, though,
more than 1 thread will speed things much or what is the best number of
threads to use; in fact, sometimes it can even slow things down, in particular
if you run multiple evams in parallel.

• cbn_init_poset: Initial poset for CBN; one of "linear" or "OT" (default).

hesbcn_opts Named list of arguments used in the fit of H-ESBCN (details in https://
github.com/danro9685/HESBCN).

• MCMC_iter: Number of MCMC iterations to run; this is argument "-n, –
number_samples" in the original H-ESBCN C code. Default: 100000, as in
the original implementation. Note that the web app uses a larger default of
200000.

• reg: Regularization: one of bic (default), aic, loglik.
• seed: Seed to run the experiment
• silent: Whether to run show message showing the folder name where HES-

BCN is run

oncobn_opts Named list of arguments used in the fit of OncoBN. See fitCPN.

mccbn_opts Named list of arguments used in the fit of MC-CBN. These are model (one of
OT-CBN or H-CBN2). The rest are options passed to adaptive.simulated.annealing;
see the help of adaptive.simulated.annealing for details. In addition, the
following options:

• tmp_dir: Directory name where the oput is located. This is passed to
adaptive.simulated.annealing, as argument outdir, with addname added,
if provided.

• addname: String to append to the temporary directory name. Default is
NULL.

• silent: Whether to show a message with the name of the directory where
MCCBN is run. This silen is different from mccbn_hcbn2_opts$verbose.

Note: do not pass thrds > 1 with cores > 1: as with MHN, do not use OpenMP
threads from forked process from mclapply.

Details

Probabilities of evolutionary paths or paths of tumor progression

Details and examples on how probabilities of paths are computed are given in Diaz-Uriarte and
Vasallo, 2019 (specifically, see section 3 of file S4_Text, https://doi.org/10.1371/journal.
pcbi.1007246.s006); see also Hosseini et al., 2019. The models used in those papers all had a
single local maximum. Here we follow the same procedure also for models with possibly more than
one maximum, such as H-ESBCN. Note that in all cases we assume evolution can only move uphill
in fitness and never crosses fitness valleys (which excludes, for example, the scenarios considered
in Weinreich and Chao, 2005).

Value

A list with named components (that should be self-explanatory). The pattern is method_component.

https://github.com/danro9685/HESBCN
https://github.com/danro9685/HESBCN
https://doi.org/10.1371/journal.pcbi.1007246.s006
https://doi.org/10.1371/journal.pcbi.1007246.s006

evam 5

• OT_model: Data frame with parent and descendant edges, edge weight, and observed and
predicted frequencies of genes.

• OT_f_graph: The fitness graph, as a sparse matrix, with weights obtained from the edge
weights (this is not a transition rate matrix). See full documentation for details.

• OT_trans_mat: Transition matrix between genotypes. This is really an abuse of what an
untimed OT provides. See full documentation for details.

• OT_predicted_genotype_freqs: Probabilities of genotypes from the OT model, as a data frame.

• OT_paths_max: If paths_max is TRUE, a list of two components, paths and weights. The
paths list is a list of igraph.vs (igraph vertex sequences) objects, one for each path; the
weights is vector of log-probabilities of each path. If paths_max is FALSE, the default, NA.

• CBN_model: Similar to the ouput from OT, but with lambdas. The lambda to be used is
"rerun_lambda".

• CBN_trans_rate_mat: Transition rate matrix as a sparse matrix.

• CBN_trans_mat: Transition matrix between genotypes, obtained from the transition rate ma-
trix using competing exponentials.

• CBN_td_trans_mat: Time-discretized transition matrix, using the uniformization method; see
full documentation for details.

• CBN_predicted_genotype_freqs: Named vector of probabilities of genotypes predicted by the
CBN model (under a model where sampling times are distributed as an exponential of rate 1).

• CBN_paths_max: As for OT.

• MCCBN_model: As for CBN, only with one column of λs.

• MCCBN_trans_rate_mat: As for CBN.

• MCCBN_trans_mat: As for CBN.

• MCCBN_td_trans_mat: As for CBN.

• MCCBN_predicted_genotype_freqs: As for CBN.

• MCCBN_paths_max: As for OT.

• MHN_theta: Matrix of estimated thetas (the log-Theta matrix). The values in this matrix can
range from minus to plus infinity.

• MHN_trans_rate_mat: As for CBN.

• MHN_trans_mat: As for CBN.

• MHN_td_trans_mat: As for CBN.

• MHN_exp_theta: Matrix of the exponential of thetas; the matrix Θ in Schill et al. (just each
theta, exponentiated; not the matrix exponential of the matrix of thetas). These are the multi-
plicative effects themselves.

• MHN_predicted_genotype_freqs: As for CBN.

• MHN_paths_max: As for OT.

• OncoBN_model: Similar to the ones above (but with a column named theta, instead of lamb-
das or edge weights), with the additional column dQuoteRelation, that can take values OR
(if fitting model DBN) or AND (if fitting model CBN); Single indicates nodes with a single
ancestor (where OR or AND make no difference).

• OncoBN_likelihood: Likelihood of the OncoBN model.

• OncoBN_f_graph: As for OT.

• OncoBN_trans_mat: As for OT.

• OncoBN_predicted_genotype_freqs: As for OT.

6 evam

• OncoBN_fitted_model: DBN or CBN, depending on what you chose.

• OncoBN_epsilon: Epsilon (this is an argument of the call to evam, but it is evaluated after
possibly having modified the input data; see below).

• OncoBN_parent_set: .

• OncoBN_paths_max: As for OT.

• HESBCN_model: As for CBN.

• HESBCN_parent_set: As for CBN.

• HESBCN_trans_rate_mat: As for CBN.

• HESBCN_trans_mat: As for CBN.

• HESBCN_td_trans_mat: As for CBN.

• HESBCN_predicted_genotype_freqs: As for CBN.

• HESBCN_paths_max: As for OT.

• original_data: The original data.

• analyzed_data: The data that were actually analyzed. Can differ from the original data because
of the data pre-processing steps.

• genotype_id_ordered: A named vector, from 1:number of genotypes, with names the geno-
types. This can be useful for sorting; WT has value 1, and genotypes are ordered by increasing
number of mutations and, withing number of mutations, alphanumerically.

• all_options: All of the options used, as a list of lists.

Note

For some methods, such as MHN and OncoBN, some parameters tipically depend on the data
(lambda and epsilon for MHN and OncoBN, respectively). Since we first examine and possibly
modify the input data, the values might not be the ones you thought you entered, as the options
should be evaluated after the data are pre-processed.

The data pre-processing involves, in sequence, these steps:

• Adding pseudosamples: If any gene (column) is always observed mutated (i.e, has a value of
1 for all observations), we add one observation that has no gene mutated.

• Removing genes with no mutations: Any column that has value of 0 for all observations is
removed.

• Merging identical columns: Any identical columns are replaced by a single one (with a new
identifier, the result of pasting the names of the fused columns separated by a _).

• No more than max_cols: If the “max_cols” argument is not NULL, and if the data set has
more columns that max_cols, we keep only max_cols columns of data, those with the largest
number of mutations.

Changing only some options: Often, you will want to change only some of the options. You can
enter, in the list, only the options you want changed (not the remaining ones). There is one example
below.

During the execution, and as messages, the elapsed time of each procedure is reported. This includes
executing the model itself and possible additional operations, such as obtaining the transition rate
matrix, etc. (So, for example, the time for estimating the matrix of thetas for MHN is much smaller
than the reported time here, which also includes building the transition rate matrix).

By default, we do not return paths to maximum/maxima, as their number can grow very quickly
with number of genotypes and you only need them if, well, you care about them.

evam 7

References

OT
- Szabo, A., & Boucher, K. M. (2008). Oncogenetic Trees. In W. Tan, & L. Hanin (Eds.), Handbook
of Cancer Models with Applications (pp. 1–24). : World Scientific.

- Desper, R., Jiang, F., Kallioniemi, O. P., Moch, H., Papadimitriou, C. H., & Sch\"affer, A A (1999).
Inferring tree models for oncogenesis from comparative genome hybridization data. J Comput Biol,
6(1), 37–51.

CBN and MCCBN
- Beerenwinkel, N., & Sullivant, S. (2009). Markov models for accumulating mutations. Biometrika,
96(3), 645.

- Gerstung, M., Baudis, M., Moch, H., & Beerenwinkel, N. (2009). Quantifying cancer progression
with conjunctive Bayesian networks. Bioinformatics, 25(21), 2809–2815. http://dx.doi.org/
10.1093/bioinformatics/btp505

- Gerstung, M., Eriksson, N., Lin, J., Vogelstein, B., & Beerenwinkel, N. (2011). The Temporal
Order of Genetic and Pathway Alterations in Tumorigenesis. PLoS ONE, 6(11), 27136. http:
//dx.doi.org/10.1371/journal.pone.0027136

- Montazeri, H., Kuipers, J., Kouyos, R., B\"oni, J\"urg, Yerly, S., Klimkait, T., Aubert, V., . . .
(2016). Large-scale inference of conjunctive Bayesian networks. Bioinformatics, 32(17), 727–735.
http://dx.doi.org/10.1093/bioinformatics/btw459

MHN
- Schill, R., Solbrig, S., Wettig, T., & Spang, R. (2020). Modelling cancer progression using Mutual
Hazard Networks. Bioinformatics, 36(1), 241–249. http://dx.doi.org/10.1093/bioinformatics/
btz513

HESBCN (PMCE)
- Angaroni, F., Chen, K., Damiani, C., Caravagna, G., Graudenzi, A., & Ramazzotti, D. (2021).
PMCE: efficient inference of expressive models of cancer evolution with high prognostic power.
Bioinformatics, 38(3), 754–762. http://dx.doi.org/10.1093/bioinformatics/btab717

(About terminology: we will often refer to HESBCN, as that is the program we use, as shown here:
https://github.com/danro9685/HESBCN. H-ESBCN is part of the PMCE procedure).

OncoBN (DBN)
- Nicol, P. B., Coombes, K. R., Deaver, C., Chkrebtii, O., Paul, S., Toland, A. E., & Asiaee, A.
(2021). Oncogenetic network estimation with disjunctive Bayesian networks. Computational and
Systems Oncology, 1(2), 1027. http://dx.doi.org/10.1002/cso2.1027

Conditional prediction of genotypes and probabilities of paths from CPMs
- Hosseini, S., Diaz-Uriarte, Ramon, Markowetz, F., & Beerenwinkel, N. (2019). Estimating the
predictability of cancer evolution. Bioinformatics, 35(14), 389–397. http://dx.doi.org/10.
1093/bioinformatics/btz332

- Diaz-Uriarte, R., & Vasallo, C. (2019). Every which way? On predicting tumor evolution using
cancer progression models. PLOS Computational Biology, 15(8), 1007246. http://dx.doi.org/
10.1371/journal.pcbi.1007246

- Diaz-Colunga, J., & Diaz-Uriarte, R. (2021). Conditional prediction of consecutive tumor evolu-
tion using cancer progression models: What genotype comes next? PLOS Computational Biology,
17(12), 1009055. http://dx.doi.org/10.1371/journal.pcbi.1009055

Reference in details
- Weinreich, D. M., & Chao, L. (2005). Rapid evolutionary escape by large populations from local
fitness peaks is likely in nature. Evolution, 59(6), 1175–1182. http://dx.doi.org/10.1111/j.
0014-3820.2005.tb01769.x

http://dx.doi.org/10.1093/bioinformatics/btp505
http://dx.doi.org/10.1093/bioinformatics/btp505
http://dx.doi.org/10.1371/journal.pone.0027136
http://dx.doi.org/10.1371/journal.pone.0027136
http://dx.doi.org/10.1093/bioinformatics/btw459
http://dx.doi.org/10.1093/bioinformatics/btz513
http://dx.doi.org/10.1093/bioinformatics/btz513
http://dx.doi.org/10.1093/bioinformatics/btab717
https://github.com/danro9685/HESBCN
http://dx.doi.org/10.1002/cso2.1027
http://dx.doi.org/10.1093/bioinformatics/btz332
http://dx.doi.org/10.1093/bioinformatics/btz332
http://dx.doi.org/10.1371/journal.pcbi.1007246
http://dx.doi.org/10.1371/journal.pcbi.1007246
http://dx.doi.org/10.1371/journal.pcbi.1009055
http://dx.doi.org/10.1111/j.0014-3820.2005.tb01769.x
http://dx.doi.org/10.1111/j.0014-3820.2005.tb01769.x

8 evamtools-deprecated

See Also

sample_evam, plot_evam

Examples

data(every_which_way_data)
Use a small data set for speed.
Dat1 <- every_which_way_data[[16]][1:40, 2:6]

Use MCCBN only if installed
MCCBN_INSTALLED <- requireNamespace("mccbn", quietly = TRUE)
methods <- c("CBN", "OT", "OncoBN", "MHN", "HESBCN")
if (MCCBN_INSTALLED) {

methods <- c(methods, "MCCBN")
}

out1 <- evam(Dat1,
methods = methods)

Running only some methods and changing some options
(this example is not necessarily sensible!)
Of course, we must use the name of the data in an option that is
data-dependent

out2 <- evam(Dat1,
methods = c("CBN", "OT", "OncoBN",

"MHN"),
mhn_opts = list(lambda = 5/nrow(Dat1)),
cbn_opts = list(omp_threads = 2),
oncobn_opts = list(model = "CBN"))

Getting paths to maximum/maxima. Using only two methods
for faster execution
out3 <- evam(Dat1,

methods = c("MHN", "OncoBN"),
paths_max = TRUE)

out3$OncoBN_paths_max
out3$MHN_paths_max

evamtools-deprecated Deprecated functions in package ‘evamtools’

Description

These functions are provided for compatibility with older versions of ‘evamtools’ only, and will be
defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated
below:

every_which_way_data 9

• plot_CPMs: plot_evam

• sample_CPMs: sample_evam

every_which_way_data Cancer data sets from Diaz-Uriarte and Vasallo, 2019; also used in
Diaz-Colunga and Diaz-Uriarte, 2021.

Description

Twenty two cancer data sets used in Diaz-Uriarte and Vasallo, 2019, as well as Diaz-Colunga and
Diaz-Uriarte, 2021. The data cover six different cancer types (breast, glioblastoma, lung, ovarian,
colorectal, and pancreatic cancer), use different types of features (nonsynonymous somatic muta-
tions, copy number alterations, or both) were analyzed in terms of pathways, functional modules,
genes, gene events, or mutations (yielding from 3 to 192 different features), and have samples sizes
from 27 to 594.

The original sources are listed below. Most of these data sets have been used before in CPM
research.

Complete details about sources, processing, and former use in CPM papers are available from S5
Text (https://doi.org/10.1371/journal.pcbi.1007246.s007) of Diaz-Uriarte and Vasallo, 2019.

Usage

data("every_which_way_data")

Format

A list of length 22. Each element of the list is a data set, with subjects in rows and genes/probes in
columns.

References

Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue
of Somatic Mutations in Cancer) Database and Website. Br J Cancer. 2004;91(2):355–358.

Cancer Genome Atlas Research Network. Comprehensive Genomic Characterization Defines Hu-
man Glioblastoma Genes and Core Pathways. Nature. 2008;455(7216):1061–1068.

Cancer Genome Atlas Research Network. Comprehensive Genomic Characterization Defines Hu-
man Glioblastoma Genes and Core Pathways. Nature. 2008;455(7216):1061–1068.

Jones S, Zhang X, Parsons DW, Lin JCH, Leary RJ, Angenendt P, et al. Core Signaling Pathways
in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science (New York, NY).
2008;321(5897):1801–6.

Parsons DW, Jones S, Zhang X, Lin JCH, Leary RJ, Angenendt P, et al. An Integrated Genomic
Analysis of Human Glioblastoma Multiforme. Science. 2008;321(5897):1807–1812.

Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The Genomic Landscapes of
Human Breast and Colorectal Cancers. Science. 2007;318(5853):1108–1113.

Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The So-
matic Genomic Landscape of Glioblastoma. Cell. 2013;155(2):462–477.

Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic Mutations
Affect Key Pathways in Lung Adenocarcinoma. Nature. 2008;455(7216):1069–1075.

10 ex_mixed_and_or_xor

Cancer Genome Atlas Research Network. Integrated Genomic Analyses of Ovarian Carcinoma.
Nature. 2011;474(7353):609–615.

Knutsen T, Gobu V, Knaus R, Padilla-Nash H, Augustud M, Strausberg RL, et al. The Interactive
Online SKY/M-FISH & CGH Database and the Entrez Cancer Chromosomes Search Database:
Linkage of Chromosomal Aberrations with the Genome Sequence. Genes, Chromosomes and Can-
cer. 2005;44(1):52–64.

Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1
Mutations in Atypical Chronic Myeloid Leukemia. Nature Genetics. 2013;45(1):18–24.

Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Human
Colon and Rectal Cancer. Nature. 2012;487(7407):330–337.

Diaz-Uriarte, R., & Vasallo, C. (2019). Every which way? On predicting tumor evolution using can-
cer progression models. PLOS Computational Biology, 15(8), 1007246. http://dx.doi.org/10.1371/journal.pcbi.1007246

Diaz-Colunga, J., & Diaz-Uriarte, R. (2021). Conditional prediction of consecutive tumor evolu-
tion using cancer progression models: What genotype comes next? PLoS Computational Biology,
17(12): e1009055. https://doi.org/10.1371/journal.pcbi.1009055

Examples

data(every_which_way_data)
lapply(every_which_way_data, colnames)
lapply(every_which_way_data, dim)

Run on a piece of one of the above data sets
Dat1 <- every_which_way_data[[16]][1:40, 2:6]
out <- evam(Dat1,

methods = c("OT", "OncoBN",
"MHN"))

ex_mixed_and_or_xor Small example data set that shows, for HESBCN, both AND and OR,
or AND and XOR, in some runs.

Description

Synthetic data set used for testing and plotting. HESBCN, with some seeds, will infer both AND
and OR, or AND and XOR, or the three of them.

Usage

data("ex_mixed_and_or_xor")

Format

A data frame with “genes” in columns and “patients” in rows.

examples_csd 11

Examples

data("ex_mixed_and_or_xor")

out_AND_OR_XOR <- evam(ex_mixed_and_or_xor,
methods = c("OT", "HESBCN", "MHN", "OncoBN"),
hesbcn_opts = list(seed = 26))

plot_evam(out_AND_OR_XOR, plot_type = "trans_mat", top_paths = 4)

examples_csd Cross sectional data sets

Description

A list of cross sectional data set to be used as example inputs, for instance by the Shiny web app.
This file was generated by running the script /inst/miscell/examples/toy_datasets.R

Usage

data(examples_csd)

Format

A list of cross sectional data sets. Each data set includes 1) the data and 2) a name. In some cases
there is also dag, or the values of a matrix. A list with 3 items:

csd csd, created by directly entering cross-sectional data.

dag dag, from models with DAGs.

matrix matrix, from MHN.

plot_evam Plot results from EvAMs (CPMs)

Description

Plots fitted EvAMs (CPMs), both fitted model and custom plots for transition rates and transition
probabilities.

Usage

plot_evam(
cpm_output,
samples = NULL,
orientation = "horizontal",
methods = NULL,
plot_type = "trans_mat",
label_type = "genotype",
fixed_vertex_size = FALSE,

12 plot_evam

top_paths = NULL
)

plot_CPMs(
cpm_output,
samples = NULL,
orientation = "horizontal",
methods = NULL,
plot_type = "trans_mat",
label_type = "genotype",
fixed_vertex_size = FALSE,
top_paths = NULL

)

Arguments

cpm_output Output from the cpm
samples Output from a call to sample_evam. Necessary if you request plot type transitions.
orientation String. If it is not "vertical" it will be displayed with an horizontal layout. Op-

tional.
methods Vector of strings with the names of methods that we want to plot. If NULL,

all methods with output in cpm_output. The list of available methods is OT,
OncoBN, CBN, MCCBN, MHN, HESBCN.

plot_type One of:
• trans_mat: Transition matrix between genotypes (see supporting informa-

tion for OT and OncoBN). This plots the object of name trans_mat from
the output of evam.

• trans_rate_mat: Transition rate matrix between genotypes; unavailable for
OT and OncoBN. This plots the object of name trans_rate_mat from the
output of evam.

• obs_genotype_transitions: Observed transitions during the simulation of
the sampling process. This plots the object called obs_genotype_transitions
from the output of sample_evam.

label_type Type of label to show. One of:
• genotype: Displays all genes mutated
• acquisition: Only displays the last gente mutated

fixed_vertex_size

Boolean. If TRUE, all nodes with have the same size; otherwise, scale them
proportional to frequencies of observed data.

top_paths Number of most relevant paths to plot. Default NULL will plot all paths. See
below, Description, for details about relevance. With many genes, and particu-
larly for MHN (or other methods, when there are no restrictions in the order of
accumulation of mutations), using NULL can lead to a very long time to plot.

Value

By default this function creates a top row with the DAG of the CPM or the log-Theta matrix for
MHN. The bottom row has a custom plot for the transition matrix, or the transition rate matrix, or
the observed genotype transitions.

plot_evam 13

In the bottom row plots, unless fixed_vertex_size = TRUE, the size of genotype nodes is propor-
tional to the observed frequency of genotypes for all plots except for plot_type = 'obs_genotype_transitions',
where it is proportional to the genotype frequency as obtained by the sampling from the predictions
of each method; if a node (genotype) has no observations, its size is of fixed size. Thus, for all plots
except plot_type = 'obs_genotype_transitions' the size of the genotype nodes is the same
among methods, but the size of the genotype nodes can differ between methods for plot_type =
'obs_genotype_transitions'.

In the top plots, in the DAGs, when a node has two or more incoming edges, color depends on the
type of relationship. (With a single incoming edge, there is no difference in model behavior with
type of edge and, for consistency with OT and CBN, nodes with a Single parent have edges colored
the same way as nodes with two or more parents and AND relationship).

In the bottom row plots, non-observed genotypes are shown in light green, to differentiate them
from the observed genotypes (shown in orange).

Note

The color and design of figures in the bottom row, depicting transition matrices, transition rate
matrices, and observed genotype transitions are heavily inspired by (a blatant copy of) some of the
representations in Greenbury et al., 2020.

It is easy to get the plots to display poorly (overlapping names in nodes, overlapping labels between
plots, etc) if you use long gene names. For best results, try to use short gene names.

The criteria to decide which are the most relevant paths with the top_paths option is the following:
1) Get all the leaves from the graph. 2) Calculate all the paths leading from "WT" to all leaves.
3) Select n paths with highest cumulative weighted sum. The weights used depend on the type of
plot (plot_type): for trans_mat it will be log probabilities (so the most relevant paths are the most
likely paths), for trans_rate_mat it will be rates, and for obs_genotype_transitions it will be raw
counts.

Plots can be more readable with a combination of top_paths and label_type. If label_type =
'acquisition' node labels will dissapear and edge label will be shown instead. They will display
the information of the last gene mutated.

plot_CPMs has been deprecated. Use plot_evam.

References

Greenbury, S. F., Barahona, M., & Johnston, I. G. (2020). HyperTraPS: Inferring Probabilistic
Patterns of Trait Acquisition in Evolutionary and Disease Progression Pathways. Cell Systems,
10(1), 39–51–10. http://dx.doi.org/10.1016/j.cels.2019.10.009

Examples

dB_c1 <- matrix(
c(

rep(c(1, 0, 0, 0, 0), 30) #A
, rep(c(0, 0, 1, 0, 0), 30) #C
, rep(c(1, 1, 0, 0, 0), 20) #AB
, rep(c(0, 0, 1, 1, 0), 20) #CD
, rep(c(1, 1, 1, 0, 0), 10) #ABC
, rep(c(1, 0, 1, 1, 0), 10) #ACD
, rep(c(1, 1, 0, 0, 1), 10) #ABE
, rep(c(0, 0, 1, 1, 1), 10) #CDE
, rep(c(1, 1, 1, 0, 1), 10) #ABCE
, rep(c(1, 0, 1, 1, 1), 10) #ACDE

14 plot_evam

, rep(c(1, 1, 1, 1, 0), 5) # ABCD
, rep(c(0, 0, 0, 0, 0), 1) # WT

), ncol = 5, byrow = TRUE
)
colnames(dB_c1) <- LETTERS[1:5]

Use MCCBN only if installed
MCCBN_INSTALLED <- requireNamespace("mccbn", quietly = TRUE)
methods <- c("CBN", "OT", "OncoBN", "MHN", "HESBCN")
if (MCCBN_INSTALLED) {

methods <- c(methods, "MCCBN")
}

out <- evam(dB_c1,
methods = methods)

plot_evam(out, plot_type = "trans_mat")

plot_evam(out, plot_type = "trans_rate_mat")

plot_evam(out, plot_type = "trans_rate_mat", top_paths=2)
plot_evam(out, plot_type = "trans_rate_mat", top_paths=2

, label_type ="acquisition")

out_samp <- sample_evam(out, 1000, output = c("sampled_genotype_counts", "obs_genotype_transitions"))

plot_evam(out, out_samp, plot_type = "obs_genotype_transitions")

Only showing new gene mutated respect with its parent
plot_evam(out, out_samp, plot_type = "obs_genotype_transitions",

label_type = "acquisition")

plot_evam(out, out_samp, plot_type = "obs_genotype_transitions",
label_type = "acquisition", top_paths = 3)

Examples with mixed AND and OR and AND and XOR for HESBCN
data("ex_mixed_and_or_xor")

out_AND_OR_XOR <- evam(ex_mixed_and_or_xor,
methods = c("OT", "HESBCN", "MHN", "OncoBN"),
hesbcn_opts = list(seed = 26))

plot_evam(out_AND_OR_XOR,plot_type = "trans_mat",
top_paths = 3)

Asking for a method not in the output will give a warning
plot_evam(out_AND_OR_XOR, plot_type = "trans_mat",

methods = c("OT", "OncoBN"),
top_paths = 4)

Only two methods, but one not fitted
plot_evam(out_AND_OR_XOR, methods = c("CBN", "HESBCN"),

plot_type = "trans_mat")

random_evam 15

Only one method
plot_evam(out_AND_OR_XOR, methods = c("MHN"),

plot_type = "trans_mat",
top_paths = 5)

plot_evam(out_AND_OR_XOR, plot_type = "trans_mat", top_paths = 3)

plot_evam(out_AND_OR_XOR, methods = c("MHN", "HESBCN"),
plot_type = "trans_mat", label_type="acquisition"
, top_paths=3)

plot_evam(out_AND_OR_XOR, methods = c("MHN", "HESBCN"),
plot_type = "trans_mat", label_type="genotype"
, top_paths=3)

random_evam Generate a random EvAM model.

Description

Generate random EvAM (CPM) models.

Usage

random_evam(ngenes = NULL,
gene_names = NULL,
model = c("OT", "CBN", "HESBCN",

"MHN", "OncoBN"),
graph_density = 0.35,
cbn_hesbcn_lambda_min = 1/3,
cbn_hesbcn_lambda_max = 3,
hesbcn_probs = c("AND" = 1/3,

"OR" = 1/3,
"XOR" = 1/3),

ot_oncobn_weight_min = 0,
ot_oncobn_weight_max = 1,
ot_oncobn_epos = 0.1,
oncobn_model = "DBN"
)

Arguments

ngenes Number of genes in the model. Specify this or gene_names.

gene_names Gene names.Specify this or ngenes.

model One of OT, CBN, OncoBN, MHN, HESBCN.

graph_density Expected number of non-entries in the adjacency matrix (all methods expect
MHN) or the theta matrix (MHN). See details.

cbn_hesbcn_lambda_min

Smallest value of lambda for CBN and HESBCN.
cbn_hesbcn_lambda_max

Largest value of lambada for CBN and HESBCN.

16 random_evam

hesbcn_probs For nodes with more than one ancestor, the probability that the dependencies are
AND, OR, XOR. You must pass a named vector.

ot_oncobn_weight_min

Smallest possible value of the weight or theta for OT and OncoBN respectively.
ot_oncobn_weight_max

Largest possible value of the weight or theta for OT and OncoBN respectively.=
1,

ot_oncobn_epos

epsilon (OncoBN) or epos (OT) error.

oncobn_model One of "DBN" or "CBN".

Details

The purpose of this function is to allow easy simulation of data under a specific model. Details
follow for specific models, with explanation of parameters.

For MHN we use the same procedure as available in the original code of Schill et al. graph_density
is 1 - sparsity. A matrix of random thetas (from a normal 0, 1, distribution) is generated, where
the number of non-zero entries is controlled by graph_density.

For CBN a random poset is generated by calling random_poset in the mccbn package (func-
tion exported but not documented) and generating random lambdas uniformly distributed between
cbn_hesbcn_lambda_min and cbn_hesbcn_lambda_max. No specific provision is made for ran-
domly generating from MCCBN, as the way to simulate is similar to CBN (but see also the addi-
tional documentation for details about the error models).

For H-ESBCN we follow a similar procedure as for CBN, but nodes that have two or more par-
ents are then assigned, at random, a relationship that can be AND, OR, or XOR, as given by
hesbcn_probs.

For OT we use a procedure similar to the one for CBN, but edge weights are uniformly distributed
between ot_oncobn_weight_min and ot_oncobn_weight_max. Since under OT a node can have
only one parent, for all nodes that have two or more parents, we randomly keep one of the par-
ents. Thus, graph_density is often larger than the actual number of non-zero connections in the
adjacency matrix.

For OncoBN we do as for CBN. If you specify oncobn_model to be DBN, all dependencies on two
or more parents are OR dependencies; if you specify CBN, dependencies are AND dependencies.
As for OT, thetas are uniformly distributed between ot_oncobn_weight_min and ot_oncobn_weight_max.

For both OT and OncoBN model, ot_oncobn_epos controls the probability that a gene can mutate if
its requirements are not satisfied. (This is thus intrinsic to the model, and independent of observation
error; see next).

In all cases, the predicted distribution of genotypes for a model is done assuming perfect compliance
with the model. See the additional documentation for details about the error models. Adding
observation error can be done using obs_error > 0 when calling sample_evam.

Value

Random model, with the same structure as returned by function evam. Thus, a named list with all
the returned entries from evam for a given method.

See Also

sample_evam

runShiny 17

Examples

rmhn <- random_evam(model = "MHN", ngenes = 5)
rcbn <- random_evam(model = "CBN", ngenes = 5,

graph_density = 0.5)

Now, obtain some data
You can obtain a random sample, with counts of frequencies of
genotypes and add observation noise
sample_mhn <- sample_evam(rmhn, N = 1000, obs_noise = 0.05)

The component sampled_genotype_counts_as_data is
a matrix that you can then pass to evam as the
input data argument (x)

runShiny Run the web application of evamtools

Description

Launch the server with the web based app.

Usage

runShiny(host="0.0.0.0", port=3000, test.mode = FALSE)

Arguments

host Host where the app will be listening

port Port where the app will be listening

test.mode See runApp

sample_evam Obtain samples of genotypes from the EvAM (CPM) models and, op-
tionally, counts of genotype transitions.

Description

Obtain samples of genotypes from the CPM models and, optionally, counts of genotype transitions.

For OT and OncoBN we always obtain the absolute genotype frequencies by drawing samples of
size N, with replacement, using as probabilities the predicted genotype frequencies.

For the remaining methods, that is also what we do, unless you request also obs_genotype_transitions
and state_counts. In this case, since we need to simulate sampling from the continuous-time Markov
Chain (with transition rates given by the transition rate matrix) to obtain state counts and observed
genotype transitions, we use this same sampling to obtain the absolute genotype frequencies. (The
results are, of course, equivalent, but sampling directly from the predicted frequencies is much
faster). Note that the option to request obs_genotype_transitions was removed from the web app,

18 sample_evam

as it was rarely used, but lead to confusion and could increase without good reason running times.
So, from the web app, we sample without using obs_genotype_transitions.

Observed genotype transitions, if requested, are obtained by counting the transitions between pairs
of genotypes when simulating from the continuous-time Markov Chain. State counts are also ob-
tained by counting from this process how many times a genotype was visited.

Usage

sample_evam(cpm_output, N,
methods = NULL,
output = c("sampled_genotype_counts"),
obs_noise = 0,
genotype_freqs_as_data = TRUE

)

sample_CPMs(cpm_output, N,
methods = NULL,
output = c("sampled_genotype_counts"),
obs_noise = 0,
genotype_freqs_as_data = TRUE

)

Arguments

cpm_output Output from calling all_methods2trans_mat

N Number of samples to generate

methods Vector of strings with the names of methods that we want to sample. If NULL,
all methods with output in cpm_output. The list of available methods is OT,
OncoBN, CBN, MCCBN, MHN, HESBCN.

output A vector with one or more of the following possible outputs: sampled_genotype_counts,
obs_genotype_transitions, state_counts. Even if requested, obs_genotype_transitions
and state_counts are not available for OT and OncoBN.

obs_noise When obtaining a sample, should we add observation noise (for example, geno-
typing error) to the data? If larger than 0, this obs_noise proportion of entries
in the sampled matrix will be flipped (i.e., 0s turned to 1s and 1s turned to 0s).

genotype_freqs_as_data

If TRUE, return a matrix where each row is a "sampled genotype", where 0
denotes no alteration and 1 alteration in the gene of the corresponding column.

Value

A list, with a many entries as methods times number of components requested. For each method
among CBN, MCCBN, HESBCN, and MHN:

• sampled_genotype_counts: Counts, or absolute genotype frequencies, obtained by sampling
from the predicted frequencies. See also Description, below.

• obs_genotype_transitions: Number of observed transitions between genotypes (as a sparse
matrix).

• state_counts: Number of times each genotype was visited during the transitions. Column sums
of observed genotype transitions are equal to state counts.

sample_evam 19

• sampled_genotype_counts_as_data: The genotypes in a matrix of 0/1. This can directly be
passed as an argument for evam, as the input data.

Observed genotype transitions are not the way to obtain estimates of transition probabilities. The
transition probabilities given by each method are already available from the output of evam itself.
These genotype transitions are the observed transitions during the simulation of the sampling pro-
cess and, thus, have additional noise.

For OT and OncoBN, only the sampled_genotype_counts and sampled_genotype_counts_as_data
components are available (the other two are not available).

Note

sample_CPMs has been deprecated. Use sample_evam.

See Also

random_evam

Examples

data(every_which_way_data)
Dat1 <- every_which_way_data[[16]][1:40, 2:6]
For faster execution, use only some methods
out <- suppressMessages(evam(Dat1,

methods = c("CBN", "OT", "OncoBN",
"MHN")))

Sample from the predicted genotype frequencies
only for OT
outS1_ot <- sample_evam(out, N = 1000, methods = "OT")

Sample from the predicted genotype frequencies
for OT and HESBCN. But the later was not in the output
so we get a warning-
outS1_ot_2 <- sample_evam(out, N = 1000, methods = c("OT", "HESBCN"))

Sample from the predicted genotype frequencies
for all methods in the output out

outS1 <- sample_evam(out, N = 1000)

Same, but adding observation error
outS1e <- sample_evam(out, N = 1000, obs_noise = 0.1)

Only CBN and will simulate sampling from the transition
rate matrix.

outS2 <- sample_evam(out, N = 1000, methods = "CBN",
output = "obs_genotype_transitions")

No output available for OT
For CBN and MHN simulate from the transition rate matrix

outS3 <- sample_evam(out, N = 1000, methods = c("CBN", "OT", "MHN"),

20 SHINY_DEFAULTS

output = c("obs_genotype_transitions",
"state_counts"))

OT sampled from the predicted genotype frequencies
No obs_genotype_transitions available for OT
CBN and OT simulate from the transition rate matrix, for consistency

outS4 <- sample_evam(out, N = 1000, methods = c("CBN", "OT", "MHN"),
output = c("obs_genotype_transitions",

"sampled_genotype_counts"))

Only CBN, will simulate sampling from the transition
rate matrix and add observation error to the genotype frequencies.

outS5 <- sample_evam(out, N = 1000, methods = "CBN",
output = c("obs_genotype_transitions", "sampled_genotype_counts"), obs_noise = 0.1)

SHINY_DEFAULTS Defaults options for running the shiny web app

Description

Defaults of the web app. This file was generated by running the script /inst/shiny-examples/evamtools/DEFAULTS.R

You will want to rerun it (so that the RData file is created again) whenever you make changes to it.

The object is called .ev_SHINY_dflt to minimize the risk of overwriting.

Usage

data(SHINY_DEFAULTS)

Format

Defaults values of the shiny app

max_genes Maximun number of genes allowed
min_genes Minimum number of genes allowed
ngenes Integer of default number of genes to use when building
cpm_samples Number of patients to samples to generate csd data from a matrix using with CPM

outputs
all_cpms All CPMs in evamtools
csd_samples Number of patients to samples to generate csd data from a matrix or a dag
template_data One of:

• csd_counts:Data frame with the counts of each genotype
• data:Data frame with cross sectional data.
• dag:Matrix of 10x10 with lambdas
• dag_parent_sest:List of 10 elements with "Single"
• lambdas:Vector of 10 lambdas, equals to 1
• thetas:Matrix of 10x10 with thetas
• gene_names:List with gene names
• name:String with the data set name

Index

∗ datasets
every_which_way_data, 9
ex_mixed_and_or_xor, 10
examples_csd, 11
SHINY_DEFAULTS, 20

.ev_SHINY_dflt (SHINY_DEFAULTS), 20

adaptive.simulated.annealing, 4

distribution.oncotree, 3

evam, 2, 12, 16, 19
evamtools-deprecated, 8
every_which_way_data, 9
ex_mixed_and_or_xor, 10
examples_csd, 11

fitCPN, 4

mclapply, 3, 4

plot_CPMs (plot_evam), 11
plot_evam, 8, 9, 11

random_evam, 15, 19
runApp, 17
runShiny, 17

sample_CPMs (sample_evam), 17
sample_evam, 8, 9, 12, 16, 17
SHINY_DEFAULTS, 20

21

	evam
	evamtools-deprecated
	every_which_way_data
	ex_mixed_and_or_xor
	examples_csd
	plot_evam
	random_evam
	runShiny
	sample_evam
	SHINY_DEFAULTS
	Index

