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1 Introduction

This document provides additional details about EvAM-Tools and the methods included in it.
Another file, evamtools examples.pdf, from https://rdiaz02.github.io/EvAM-Tools/

pdfs/evamtools_examples.pdf, includes commented examples, with both real and simu-
lated data, that illustrate the use and utility of EvAM-Tools.

You can run the web app from https://iib.uam.es/evamtools/ or download a Docker
image from https://hub.docker.com/r/rdiaz02/evamshiny; to run the R package down-
load a Docker image from https://hub.docker.com/r/rdiaz02/evamrstudio.

2 Cancer Progression Models included in EvAM-Tool: details

2.1 Cancer Progression Models and cross-sectional data: overview and
type of input data

In cross-sectional data a single sample is obtained from each subject or patient. That sin-
gle sample represents the ”observed genotype” of, for example, the tumor of that patient.
Genotype can refer to single point mutations, insertions, deletions, or any other genetic mod-
ification; in fact, these models have been used to analyze point mutations, gains and losses of
CGH regions, SNP alterations, pathway alteration data, etc: the granularity of the data and
level of analysis depend on the question addressed, and is not inherent to the models. As is
often done by Cancer Progression Models (CPM) software, we think of the cross-sectional data
as being stored in a matrix, where rows are patients or subjects, and columns are genes/CGH
regions/SNPs/pathways/etc; the data is a 1 if the event (or alteration or mutation) was
observed and 0 if it was not.

We have used expressions such as ”genotype”, ”mutation” and other genetic- and genomic-
related terms, but nothing prevents CPMs from being used with non-genetic, non-genomic
data, and thus our preference for the expression ”event accumulation models”. The key
features that the data must have to be properly analyzed with these methods are: a) that
events or alterations are (or can be reasonably assumed to be) gained one by one; b) that
once gained, they are not lost (e.g., there is no back mutation); c) that we can consider the
different individuals/patients in the cross-sectional data as replicate evolutionary experiments
or runs where all individuals are under the same constraints (e.g., genetic constraints if we are
dealing with mutations); see further details below (section 2.2, “Cancer Progression Models
(CPMs): assumptions”).

Cancer progression models (CPMs) or, more generally, event accumulation models, use
these cross-sectional data to try to infer restrictions in the order of the irreversible accumu-
lation of discrete events; for example, that a mutation on gene B is always preceded by a
mutation in gene A (maybe because mutating B when A is not mutated results in a lethal
state for that cell). Inferring restrictions, in the sense just explained (B only if A), is what
CBN, OT, OncoBN, and H-ESBCN do. Other cancer progression models, such as MHN, in-
stead of modeling deterministic restrictions, model promoting/inhibiting interactions between
genes, for example that having a mutation in gene A makes it very likely to gain a mutation
in gene B.

2.2 Cancer Progression Models (CPMs): assumptions

CPMs model the irreversible accumulation of discrete events. They assume that the obser-
vations in the cross-sectional data set are independent realizations of evolutionary processes
where the same constraints hold for all tumors; therefore, a cross-sectional data set is con-
sidered a set of replicate evolutionary experiments where all individuals are under the same
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(genetic) constraints (Gerstung et al., 2011; Beerenwinkel et al., 2015, 2016; Diaz-Uriarte and
Vasallo, 2019). The objective of CPMs is to infer these constraints. CPMs assume that events
are gained one by one (no simultaneous acquisition of events) and that there is no back mu-
tation so that once gained an event is not lost; CPMs also assume that the events that drive
the process (driver genes if we are thinking about cancer) are known and present in the data
set. Finally, CPMs assume that all subjects start the evolutionary process without any of
the studied events (i.e., all subjects start the process with 0s in the matrix of subjects by
alterations). If we think about cancer, this means that “CPMs assume that all tumors start
cancer progression without any of the mutations considered in the study (the above matrix
of subjects by driver alterations), but other mutations could be present that have caused the
initial tumor growth” (Diaz-Uriarte and Vasallo, 2019); these other additional mutations that
lead to the initiation of the process are absorbed in the root node from which cancer starts
(Attolini et al., 2010).

2.3 Cancer Progression Models (CPMs): details

2.3.1 Oncogenetic Trees (OT)

OTs are among the earliest formal models of accumulation of mutations in cancer. They were
originally described in Desper et al. (1999) (see also Simon et al., 2000; Radmacher et al.,
2001); additional references include Szabo and Boucher (2008); Szabo and Pappas (2022);
Szabo and Boucher (2002). With OTs, restrictions in the accumulation of mutations (or
events) are represented as a tree1. Hence, a parent node can have many children, but children
have a single parent: therefore, an event can only directly depend on another event. As for
all CPMs that use DAGs and trees, an edge from gene i to gene j means that a mutation in i
must occur before a mutation in j can occur; an edge (or arrow from i to j) indicates a direct
dependency of a mutation in gene j on a mutation in gene i.

OTs are untimed models (in contrast to, for example CBN, explained in section 2.3.3):
weights along edges (the πxy we will use below) can be directly interpreted as probabilities
of transition along the edges by the time of observation (Szabo and Boucher, 2008, p. 5). In
other words, edge weights represent conditional probabilities of observing a given mutation,
when the sample is taken, given the parents are observed.

As explained in (Szabo and Boucher, 2008, Definition 1, p. 4): “A pure untimed oncoge-
netic tree is a tree T with a probability π(e) attached to each edge e. This tree generates
observations on mutation presence/absence the following way: each edge e is independently
retained with probability π(e); the set of vertices that are still reachable from M0 [the root
of the tree, representing no alterations] gives the set of the observed genetic alterations.”

To give an example, suppose a tree as follows:

1A tree is a Directed Acyclic Graph (DAG) where a child node can have only only one parent. Thus, trees
are DAGs, but not all DAGs are trees.
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.

In this tree, events (mutations) A and B can be acquired independently, and depend on no
one (Root is M0 in the notation of Szabo and Boucher, 2008). C and D depend on A (and are
independent of each other, conditional on A). The parameters of the model, shown in brown,
are:

• Probability of acquiring A, π0A = 0.4; π0A is the notation in Szabo and Boucher, 2008,
and is the weight along the edge from M0 (Root) to A.

• Probability of acquiring B, π0B = 0.7.

• Probability of acquiring C, given A has already been acquired, πAC = 0.3 (again, πAC

is the weight along the edge from A to C).

• Probability of acquiring D, given A has already been acquired, πAD = 0.2.

According to the above model, the tumor develops as follows: starting from Root (or M0),
the tumor can gain A and B, and these are independent events. If A is gained, then the tumor
can gain C and D, and these two are again independent events (once A has been gained).
Therefore, the probabilities of the different genotypes or states of the tumor at the time of
sampling are:

• Only Root or M0, i.e., no events gained (i.e., only genotypes without any mutation, or
“WT”): (1− π0A)(1− π0B).

• Only A occurs (i.e., genotype A): π0A(1− π0B)(1− πAC)(1− πAD).

• Only B occures (i.e., we observe genotype B): π0B(1− π0A).

• Both A and B (but no C or D), genotype AB: π0Aπ0B(1− πAC)(1− πAD).

• A and C, genotype AC: π0A(1− π0B)πAC(1− πAD).

• Both B and C but no A, genotype BC: 0 (as A needs to occur before C can occur).

• . . .

The above describes the ideal scenario, without errors. OT includes a model for errors
from different sources: deviations from the model (i.e., events that do not respect the pure
untimed model above) and observational (e.g., genotyping) errors. Together, these two types
of error cause false positive and false negative observational errors (ϵ+, ϵ−). These error rates
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are estimated by the OT algorithm and are incorporated in the computation of the predicted
frequencies of genotypes according to OT (see details in “CPMs: Error models”, section
2.3.6).

When using OT, as explained in Szabo and Boucher (2008, p. 5), the main objective is
reconstructing the topology of the tree; the estimation of the edge probabilities (the weights
or πxy) and the error rates (ϵ+, ϵ−) is of secondary importance. As detailed in Szabo and
Boucher (2008, p. 5), the estimation of the topology uses an “(...) algorithm [that] takes
a greedy bottom-up approach: it assigns the parent of each node by finding the maximum-
weight in-edge starting from the leaves.” and that provides a computationally fast way of
inferring the tree. The full algorithm for topology reconstruction is provided in Szabo and
Boucher (2008, Section 3 and Fig. 2) (the algorithm is also provided in Figure 2 of file ot.pdf,
part of the documentation of Szabo and Pappas, 2022); estimation of the weights is detailed
in Szabo and Boucher (2008, p. 13). Sufficient conditions for the reconstruction of the true
tree when there are false positive and false negative errors are given in Szabo and Boucher
(2002) and sample size requirements in Szabo and Boucher (2008, p. 8)(see also Desper et al.,
1999).

2.3.2 OncoBN

OncoBN, described in Nicol et al. (2021), is similar to OT in the sense of being an untimed
oncogenetic model but, in contrast to OT, a node can have multiple parents (again, as for all
CPMs that use DAGs and trees, an edge from gene i to gene j means that a mutation in i
must occur before a mutation in j can occur; an edge —or arrow from i to j— indicates a
direct dependency of a mutation in gene j on a mutation in gene i). When there are multiple
parents the relationships and models can be of two different kinds:

• disjunctive (OR relationship): the DBN, Disjunctive Bayesian Network model;

• conjunctive (AND relationship): the CBN, Conjunctive Bayesian Network model.

A given OncoBN be either a DBN or a CBN, but not both: it can have conjunctive or
disjunctive relationships, but not both. (And note that the CBN models fitted by OncoBN
are untimed, and thus the parameters do not have the same interpretation as the parameters
of the CBN models discussed below, “Conjuntive Bayesian Networks (CBN)”, section 2.3.3).

As explained in Nicol et al. (2021, p. 2), a key difference between the conjunctive (AND)
and the disjunctive (OR) model is that under the conjunctive model all parent alterations that
constitute the AND relationship must be present in a cell for the child mutation to occur; the
disjunctive model, in contrast, allows child event to occur when just one of the parent events
has taken place. According to the authors, this might make the model better for modeling
intra-tumor heterogeneity.

The following DAG shows a conjunctive model fitted with OncoBN:
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.

Note that the value of 0.3 is the value of the parameter θC : this is the conditional prob-
ability of C given its ancestors. (So, in contrast to OT, but similar to CBN and H-ESBCN,
the parameters are not of edges, but of events). The values of θ are: θA = 0.8, θB = 0.4,
θC = 0.3. According to the OncoBN model the probabilities of the different genotypes are:

• Only Root (i.e., only genotypes without any mutation, or “WT”): (1− θA)(1− θB).

• Only A, i.e., genotype A: θA(1− θB).

• A and C, genotype AC: 0, since acquiring C requires also B.

• A and B (but not C), genotype AB: θAθB(1− θC).

• All of A, B, C, genotype ABC: θAθBθC .

• Only C: 0, since neither A nor B have occurred.

• . . .

The next DAG is identical, except the model is a disjunctive one (notice the edges are OR
edges):

.

Now, θC is the probability of C occurring if at least one of its ancestors has occurred.
Therefore, we have the following probabilities of genotypes, where those that differ from the
conjunctive case have been marked in bold with an initial asterisk:

• Only Root (i.e., only genotypes without any mutation, or “WT”) : (1− θA)(1− θB).
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• * Only A: θA(1− θB)(1− θC).

• * A and C, genotype AC: θA(1− θB)θC .

• A and B (but not C), genotype AB: θAθB(1− θC).

• All of A, B, C, genotype ABC: θAθBθC .

• Only C: 0, since neither A nor B have occurred.

The above represent the probabilities in a model without errors. OncoBN includes an
error model, the “spontaneous activation model”, where there is a non-zero probability of
observing child events when restrictions in the DAG are not satisfied. The rate of spontaneous
activation is part of the estimation procedure, and is included in the computed probabilities
of the different genotypes (see details in section 2.3.6, “CPMs: Error models”). For example,
under the disjunctive model above, the probability of observing genotype C would be (1 −
θA)(1 − θB)ϵ, where ϵ is the spontaneous activation probability, which is set as the same for
all events (Nicol et al., 2021, p. 5). (Figure 1 of Nicol et al., 2021 provides another example
of the role of ϵ in computing predicted probabilities)2.

For structure and model parameter learning (Nicol et al., 2021, p. 5)), and to avoid overfit-
ting and increase interpretability of the models, the authors use as the score the Bayesian Infor-
mation Criterion (BIC), so the log-likelihood is penalized by the number of edges (log(N)|E|,
where |E| the number of edges); in addition, the search space is restricted to DAGs with an
in-degree bound that, by default, is set to 3 (this option can be changed in EvAM-Tools;
in the web app, under “Advanced options”, “OncoBN options”, “k: In-degree bound of the
estimated network”). Finally, for disjunctive models, there is an additional step of removing
low confidence edges that are likely to be spurious.

To search for the best graph (the model with the best BIC) the authors provide two
algorithms: an exact procedure that uses dynamic programming and an approximate structure
learning algorithm that uses genetic programming (Nicol et al., 2021, p. 5)). The authors
recommend the dynamic programming procedure for less than 30 events, and the genetic
algorithm for larger problems. (By default, EvAM-Tools uses the dynamic programming
algorithm; this can be changed, for example in the web app, under “Advanced options”,
“OncoBN options”, “Algorithm”).

2.3.3 Conjuntive Bayesian Networks (CBN)

In terms of the representation of the restrictions, CBN, like OncoBN, generalizes the tree-
based restriction of OT to a directed acyclic graph (DAG): a node can have multiple parents.
A node with multiple parents means that all of the parents have to be present (all of the
parent events must have occurred) for the children to appear; therefore, relationships are
conjuntive —AND relationships between the parents (recall OncoBN can model AND and
OR relationships). CBN also differs from OT and OncoBN because the CBN model is a timed
model: the λs, the parameters of the models, are the rates of the exponentially distributed
times to fixation of an event given that all parents of that event have been observed (i.e., given
that the event restrictions, as specified in the DAG, are satisfied: Montazeri et al., 2016, p.
i729; Gerstung et al., 2009, section 2.2).

Specifically, Ti, the waiting time for event i to occur, is an exponentially distributed
random variable with parameter λi conditioned on all the parent mutations, pa(i), having

2Actually, the supplementary material of the OncoBN paper describes also an observational error model,
where it is said, in p. 3, ”Assuming ξ+ and ξ− are fixed and known”; notice the “known”. Moreover, as far
as I can tell, the code makes no provision for it, nor does it return any estimate. Thus, this is why I do not
mention this observational error model in the main text.
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occurred (Gerstung et al., 2009); thus, Ti is defined recursively as (Gerstung et al., 2009;
Hosseini et al., 2019):

Ti ∼ Exp(λi) + max
j∈pa(i)

Tj (1)

To give an example, suppose a DAG as follows:

.

Then, the time to fixation of the three mutations (not genotypes) are:

• TA ∼ Exp(λA)

• TB ∼ Exp(λB)

• TC ∼ Exp(λC) + max(TA, TB)

and we will not observe C unless both A and B have occurred.
The λ parameters of the CBN model define the transition rate matrix between genotypes

(see also Montazeri et al., 2016). For the example above we have:

• Rate from WT to genotype with A mutated: λA.

• Rate from WT to genotype with B mutated: λB.

• Rate from genotype with A mutated to genotype with both A and B mutated: λB.

• Rate from genotype with B mutated to genotype with both A and B mutated: λA.

• Rate from genotype with A and B mutated to genotype with A, B, C mutated: λC .

In other words, this is the transition rate matrix, where only genotypes that can appear
are shown (i.e., genotypes C, AC, and BC are not shown):

Q =



WT A B AB ABC

WT −(λA + λB) λA λB 0 0
A 0 −λB 0 λB 0
B 0 0 −λA λB 0
AB 0 0 0 −λC λC

ABC 0 0 0 0 0

 (2)

For parameter estimation, and since the observation times of the different individuals are
unknown, it is assumed that observation time is exponentially distributed with parameter 1
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(the probabilities of observing the different events are invariant under rescalings of the λi and
the λs, the rate of the time to observation — Gerstung et al., 2009).

In EvAM-Tools we include two versions of CBN that differ in the algorithm (and, thus,
in speed and in how many observations can be analyzed) and in the error model: H-CBN,
described in Gerstung et al. (2009, 2011), and MC-CBN, described in Montazeri et al. (2016).
Unless qualified otherwise (i.e., saying MC-CBN), when we say “CBN” we refer to H-CBN.
By default, MC-CBN is not selected as a method to be used in the web app because it is
often much slower than any of the remaining methods; but H-CBN, although faster, can only
handle, at most, 14 events whereas MC-CBN can handle hundreds of events.

H-CBN uses simulated annealing with a nested expectation-maximization (EM) algorithm
for estimation: structure —DAG— learning is conducted with simulated annealing and pa-
rameters (λs and ϵ —the error term; see next) are estimated using the EM algorithm (section
2.3, pp. 2810–2811 of Gerstung et al., 2009). As is the case for most other methods, the key fo-
cus of the algorithm is inferring the DAG of restrictions (the poset); the selected DAG (poset)
is the maximum likelihood one “(...) without additional model selection criterion such as the
Akaike or Bayesian information criterion (AIC and BIC, respectively)” (Gerstung et al., 2009,
p. 2811). Briefly, the algorithm first finds the maximum likelihood estimates for λs and ϵ of a
given poset; a new poset is then generated from the previous one (after addition/removal of
relations from the poset), the maximum likelihood estimates of λs and ϵ computed for this new
poset, and the new poset is accepted if its likelihood is larger or, if smaller, it is accepted with
a probability that is a function the difference in likelihoods divided by the temperature (recall
they use a simulated annealing algorithm). MC-CBN uses a Monte-Carlo EM algorithm (see
Montazeri et al., 2016, p. i731 for network —DAG— learning and p. i730 and Algorithm 1 in
p. i731 for parameter estimation).

H-CBN and MC-CBN also differ in their error models. In H-CBN the λs describe the
true underlying model that produces the true, hidden genotypes, but the observed genotypes
might differ from the true ones because of observation error; the observation error is a Bernoulli
process, in which a mutation is falsely observed with probability ϵ, which is assumed to be the
same and independent across all sites (see also Sakoparnig and Beerenwinkel, 2012, p. 2319).
In MC-CBN the model is a mixture between the CBN model and a noise component model,
such as the independence model provided by a DAG where all mutations are direct descendants
of the root (the empty poset; see details in Montazeri et al., 2016, p. i731). The error models
are, of course, part of the fitting algorithm.

2.3.4 Hidden Extended Suppes-Bayes Causal Networks (H-ESBCN)

H-ESBCN (Hidden Extended Suppes-Bayes Causal Networks), described in Angaroni et al.
(2021) (and used by its authors as part of Progression Models of Cancer Evolution, PMCE),
is similar to CBN in that it is a timed model, where the parameters of the model, the λs, are
the rates of the exponentially distributed times to fixation of an event given that the parents
of that event have been observed. In contrast to CBN, the dependency relationships are not
limited to AND, and they can include OR and XOR. In contrast to OncoBN with respect
to dependencies, H-ESBCN adds XOR relationships, but H-ESBCN allows the very same
model to include AND, OR, and XOR relationships; the fitting algorithm includes automatic
inference of logical formulas for these three different patterns, AND, OR, XOR.

To give an example, suppose the following DAG (we only show XOR and OR relationships,
since we have already shown AND relationships in examples above, and there is nothing new
with AND relationships); this example is discused, in another context, in “An example with
OR and XOR” (section 7.4):
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.

According to this DAG

• A, B, C depend on none, and their rates are, respectively, λA, λB, λC .

• D depends, with an OR, on both A and B: the rate of fixation of D given at least one
of A or B have occurred is λD. Thus, we can observe genotypes AD, BD, ABD.

• E depends, with an XOR, on B and C: the rate of occurrence of E given exactly one
of B XOR C has occurred is λE . Thus, E can only be observed in genotypes that show
B XOR C, such as genotypes BE, CE, ABE, ACE; genotypes BCE or ABCE, in
contrast, are not allowed because those genotypes have both B and C mutated.

The transition rate matrix between the genotypes that are possible under the model is
shown below, where rows are origin, column destination (i.e., entries of Qxy are the transition
rates from x to y):

11



W
T

A
B

C
A
B

A
C

A
D

B
C

B
D

B
E

C
E

A
B
C

A
B
D

A
B
E

A
C
D

A
C
E

B
C
D

B
D
E

A
B
C
D

A
B
D
E

A
C
D
E

W
T

λ
A

λ
B

λ
C

A
λ
B

λ
C

λ
D

B
λ
A

λ
C

λ
D

λ
E

C
λ
A

λ
B

λ
E

A
B

λ
C

λ
D

λ
E

A
C

λ
B

λ
D

λ
E

A
D

λ
B

λ
C

B
C

λ
A

λ
D

B
D

λ
A

λ
C

λ
E

B
E

λ
A

λ
D

C
E

λ
A

A
B
C

λ
D

A
B
D

λ
C

A
B
E

λ
D

A
C
D

λ
B

λ
E

A
C
E

λ
E

B
C
D

λ
A

B
D
E

λ
A

A
B
C
D

A
B
D
E

A
C
D
E

12



Note that it is possible to have two (or more) parents to have dependents with different
relationships. This, for example, is one of the pre-loaded DAGs in EvAM-Tools:

.

The error model is similar to the one of CBN “Conjuntive Bayesian Networks (CBN)”
(section 2.3.3), as described in Gerstung et al. (2009); Sakoparnig and Beerenwinkel (2012);
see also “CPMs: Error models” (section 2.3.6). The fitting algorithm is described in Angaroni
et al. (2021, Sections 2.1, 2.2, pp. 756 and 757). As for other methods, its main focus
is inferring the structure of the DAG, in this case the maximum a posteriori one in the
framework of Suppe’s probabilistic causation. A key feature of the algorithm is the attempt
to automatically detect the correct logical formula (AND, OR, XOR) for the dependency.
The structure searching algorithm uses MCMC from a randomly initialized structure which is
modified according to eight different possible moves (Angaroni et al., 2021, p. 756). To avoid
fitting unneeded logic formulas, the structure learning algorithm includes regularization, which
can be chosen by the user to be AIC or BIC. Estimation of the λs (and error rate) for a fixed
DAG structure is then done using an EM algorithm (Angaroni et al., 2021, p.757).

2.3.5 Mutual Hazard networks (MHN)

All of the methods described above share a model of deterministic dependencies for the accu-
mulation of events (or mutations) (Schill et al., 2020): an event (a mutation) can only occur
if its dependencies are satisfied (though note that both OT and OncoBN, as well as MB-CBN
allow for error deviations from this requirement — see “CPMs: Error models”, section 2.3.6).

In contrast to the previous methods, with MHN (Schill et al., 2020) dependencies are
not deterministic and events can make other events more likely (promoting influence) or less
likely (inhibiting influence). The rate of occurrence of events is modeled by a spontaneous
rate of fixation and a multiplicative effect that each of these events can have on other events
via pairwise interactions; these pairwise interactions are what allow MHN to model both
promoting and inhibiting dependencies.

In more detail, the Markov process that governs the transition from a genotype x to a
genotype with mutation i added to genotype x is specified by (Schill et al., 2020, eq. 2):

Qx+i,x = Θii

∏
xj=1

Θij (3)

where xj is 1 if gene j is already mutated in genotype x, and Qy,x is the transition rate from
x to y (we are using the notation in Schill et al., 2020, where transition rate matrices are
transposed relative to the notation in Montazeri et al., 2016 that we have used when
describing CBN and H-ESBCN). Θii is the baseline hazard or the rate of i before any other
events; Θij is the multiplicative effect of event j on the rate of event i. Therefore, equation 3
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shows the transition rate as the product of the baseline hazard times the multiplicative
effects of all the other mutated genes or events, j, on i.
To give a specific example, suppose the Θ matrix for a three-gene model3 is:

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

 (4)

The following are the transition rates for some transitions:

• From WT to the genotype with the first event or gene: Θ11.

• From the genotype with the first event to the genotype with the first and the second
events: Θ22Θ21.

• From the genotype with the first event and second events to the genotype with the
third event: Θ33(Θ31Θ32).

Note that in EvAM-Tools we show the log-Θ matrix, the matrix of θij , where Θij = eθij ,
because this makes it immediate to identify the inhibiting relationships as those with a
negative sign, and it symmetrizes the effects around 0.
As can be seen, the relationships between events are inhibiting (event j inhibits event i if
Θij < 1 or, equivalently, θij < 0) or promoting (Θij > 1 or, equivalently, θij > 0), but there
are no deterministic restrictions (although MHN can be seen as a stochastic approximation
to the deterministic dependencies of CBN: see the supplementary material of Schill et al.,
2020).
To fit the model, because observation time is unknown, and as is done by Gerstung et al.
(2009), the authors assume that observation times are exponentially distributed with
parameter 1. To prevent overfitting, the model fitting procedure maximizes the likelihood of
the data minus an L1 penalty to try to avoid many interacting events (i.e., to promote
sparsity of the fitted models): it uses a tunning parameter, λ4 that multiplies the sum of the
absolute values of the off-diagonal entries of the log Θ matrix (Schill et al., 2020, eq. 6). The
default value of λ is 1/number of rows of the data set. The authors provide an efficient
implementation of their method that uses a Quasi-Newton algorithm. There is no explicit
error model for MHN.

2.3.6 CPMs: Error models

We have mentioned error models when describing each procedure. We put together those
details here, to allow for easier understanding of the similarities and differences between
methods. (Methods are not ordered as above but, rather, by increasing complexity of the
error model).

MHN There is no explicit error model (the simulation process described in p. 244 of Schill
et al., 2020 uses a scheme as the one in CBN, Gerstung et al., 2009, explained below,
but that is not part of the MHN model itself).

CBN In H-CBN the λs describe the true underlying model that produces the true, hidden
genotypes, but the observed genotypes might differ from the true ones because of
observation error, for instance genotyping error (Gerstung et al., 2009, p. 2810). The
observation error is a Bernoulli process, in which a mutation is falsely observed with
probability ϵ, which is assumed to be the same and independent across all sites (see

3As a different example, see the set of transitions for a four-gene example in Schill et al., 2020, Fig. 2.
4This λ is different from the λs of CBN and H-ESBCN
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also Sakoparnig and Beerenwinkel, 2012, p. 2319); in other words, for all events of all
subjects in the sample, if the true observation is a 0, it has a probability of being
observed as a 1 of ϵ, and similarly for an observation that is truly a 0.

H-ESBCN As for CBN (Angaroni et al., 2021, p. 756).

MC-CBN With MC-CBN the model is a mixture between the CBN model and a noise
component model, such as the independence model provided by a DAG where all
mutations are direct descendants of the root (the empty poset; see details in Montazeri
et al., 2016, p. i730-i731). The simulations in https://github.com/cbg-ethz/MC-CBN,
however, use a procedure where observations are generated from an underlying poset
with a given set of lambdas, and symmetric error is then added (see the functions
mccbn:::random poset and mccbn:::random posets), as for CBN above.

OncoBN The model includes a DBN (disjunctive) or CBN (conjunctive) model, as given
by a DAG and a set of θs, and a “spontaneous activation model” (Nicol et al., 2021,
p. 3-4). The “spontaneous activation model”, with parameter ϵ, represents deviations
from the model and allows child mutations to appear even if the parents in the DAG
have not been mutated (i.e., even if the restrictions encoded in the DAG are not
satisfied). This ϵ, therefore, has a different meaning from the ϵ of CBN and H-ESBCN.

OT There are two sources of deviations from the OT model: a) those that result from
observational (or genotyping) errors, that can lead to both false positive and false
negative observational errors; b) events occurring that do not respect the OT model
(Szabo and Boucher, 2002, 2008). The second source of errors would be the same as
the “spontaneous activation” in OncoBN.

The oncotree.fit function in the Oncotree package returns a eps component with
the estimated false positive, epos (ϵ+), and false negative, eneg (ϵ−), error rates. But
these are the result of combining the two sources of error (Szabo and Boucher, 2008):
observation errors and true deviations from the model. So observation error is
reflected in both eneg (ϵ−), and epos (ϵ+), whereas true deviations from the model are
only reflected in epos (ϵ+). In other words, the false negatives, as measured by the
estimated eneg, are due purely to observation error. But the epos are not equivalent
to the ϵ of OncoBN: epos includes both observation error (false positives) and true
mutations that occur without respecting the restrictions of the OT DAG (tree).

So, when obtaining predicted frequencies under the model, for CBN, H-ESBCN, and MHN,
we assume perfect compliance with the model; symmetric noise (e.g., genotyping noise) is
added only when obtaining finite samples from the model. For OT and OncoBN the
predicted frequencies from the model already include deviations from the “pure” model
(“pure model”: the model where the only possible genotypes are those that strictly respect
the DAG or tree).

2.3.7 CPMs: output

All methods provide directly, as output, estimates of the key constituents of their models, in
particular:

OT Tree of restrictions, edge weights (πs), errors (ϵ+, ϵ−).

OncoBN DAG of restrictions, event θ, spontaneous activation probability or error (ϵ).
(The type of model, conjunctive or disjunctive, is not estimated, but set by the user).
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CBN DAG of restrictions, λs, error rate.

H-ESBCN DAG of restrictions, including type of restriction (AND, OR, XOR), λs, error
rate.

MHN Θ matrix (or its equivalent θ or log-Θ matrices).

In addition, directly derived predictions, such as predicted probabilities of genotypes
are provided by the original code/implementation (e.g., for OT, OncoBN, MHN) or can be
obtained for CBN and H-ESBCN from the transition rate matrices (see details in “Predicted
genotype frequencies”, section 3). From the predicted probabilities of genotypes we can
obtain finite sampled genotype counts, as explained in “Error models and obtaining
finite samples (or sampled genotype counts)” (section 5.2).
Transition rate matrices themselves are not part of the immediate output of any of the
methods (except MHN5) but, as explained in “Predicted genotype frequencies” (section 3),
can be obtained from the DAG and the λs, as we do in EvAM-Tools; we have already seen
examples of the transition rate matrices for all of CBN (“Conjuntive Bayesian Networks
(CBN)”, section 2.3.3), H-ESBCN (“Hidden Extended Suppes-Bayes Causal Networks
(H-ESBCN)”, section 2.3.4), and MHN (“Mutual Hazard networks (MHN)”, section 2.3.5).
Transition probabilities can be computed from the transition rate matrices (for instance,
using competing exponentials). And from the transition probabilities we can compute
probabilities of evolutionary paths as the product of each transition along each possible
path (see references and details in “Probabilities of evolutionary paths and transition
probabilities”, section 4).
All of this output is available from EvAM-Tools, and the web app shows most of them using
both figures and tables. (Probabilities of evolutionary paths, even if asked to be computed,
are not explicitly available from the web app, as they can be unwieldy to display; they are
provided in the output one can download and are, of course, implicit from the transition
probabilities between genotypes, and transition probabilities are displayed in the web app.)

2.3.8 CPMs: summary

The following table provides a summary of the main features of each method.

5And we saw an example in “Mutual Hazard networks (MHN)” (section 2.3.5)
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Method Timed/
untimed

Number and type of de-
pendencies

Restrictions Representation and out-
put

OT Untimed Single Deterministic Tree with edge weights
(πs)

OncoBN Untimed AND (CBN version),
OR (DBN version); but
a given model can only
contain either AND xor
OR, not both

Deterministic DAG with event thetas
(θs)

CBN Timed AND Deterministic DAG with event rates
(λs)

H-ESBCN Timed AND, OR, XOR Deterministic DAG with event rates
(λs)

MHN Timed Promoting and inhibit-
ing (but only pairwise
interactions)

Stochastic
dependencies

Θ matrix (diagonal en-
tries: baseline haz-
ards; off-diagonal: mul-
tiplicative effects).

3 Predicted genotype frequencies

3.1 Predicted genotype frequencies for CBN, MCCBN, MHN, H-ESBCN

Briefly, for CBN, MCCBN, MHN, and H-ESBCN, the transition rate matrix describes the
true process that generates genotypes and this matrix can be obtained from the parameters
of the model (θs for MHN, λs for the rest); we haven seen examples for all these methods in
section “Cancer Progression Models (CPMs): details” (section 2.3). Therefore, we can use
the transition rate matrix to calculate the predicted probabilities of the different genotypes
using standard results from continuous-time Markov Chains. In all cases here, we assume
that the time of observation is exponentially distributed with rate 1 (as in Gerstung et al.,
2009 or Schill et al., 2020)6.
In more detail, obtaining the transition rate matrix from the model output is detailed in
Montazeri et al. (2016) for CBN, and Schill et al. (2020) for MHN; for H-ESBCN see section
7, “H-ESBCN: details and examples of using λs and computing transition rate matrices and
predicted genotype frequencies”.
Once we have obtained the transition rate matrix, the fastest way to obtain the predicted
genotype probabilities is using equation 4 in Schill et al. (2020):

p =

∫ ∞

0
dt e−t etQ p0 = [I −Q]−1p0 (5)

where p0 is the initial distribution (i.e., 1 for WT and 0 for the rest of the genotypes), t is
the time of observation (again, assumed to be exponentially distributed with parameter 1),
and Q is the transition rate matrix (beware: written here, as in Schill et al., 2020, with Qij

meaning the transition rate from j to i, in contrast to our expressions for transition rate
matrices in equation 2 or the transition rate matrix in section 2.3.4). This is implemented in

6There is code in evamtools, in function population sample from trm, to obtain samples at arbitrary
collections of times —i.e., not limited to times exponentially distributed with rate 1.
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the non-exported function probs from trm, and follows also what is done in the original
Generate.pTh function from Schill et al. (2020). probs from trm is called from function
evam.
Instead of using that expression, we can sample from the continuous-time Markov Chain
using standard procedures (e.g., ch. 5 in Wilkinson, 2019 or Algorithm 1 in Gotovos et al.,
2021). Sampling is what we do in EvAM-Tools when you call sample CPMs asking for
obs genotype transitions or state counts to be returned (and this sampling is
implemented in the non-exported function population sample from trm, and called, as
needed, by function sample CPMs).

3.2 Predicted genotype frequencies for OT and OncoBN

OT and OncoBN do not return rates of a continuous-time Markov chain, but probabilities of
seeing specific alterations at the time of observation. Predicted probabilities of genotypes for
OT and OncoBN are obtained using the weights (OT) or θs (OncoBN), according to the
expression for the probability of observing a genotype; these expressions incorporate, when
predicting the genotypes, the estimated errors (ϵ+, ϵ− for OT, ϵ for OncoBN; see section
“CPMs: Error models”, section 2.3.6). For example, see section 2.2 in Szabo and Boucher
(2008) for OT and Figure 1 and section 2.1 in Nicol et al. (2021) for OncoBN or section
“OncoBN” (section 2.3.2). For OT we can use function distributiion.oncotree in
package Oncotree and for OncoBN function Lik.genotype from package OncoBN7.

For all methods, once we have the predicted probabilities, we can obtain a finite sample and,
if we want, add observational (or genotyping) noise; see details in section 5.2, “Error models
and obtaining finite samples (or sampled genotype counts)”.

4 Probabilities of evolutionary paths and transition
probabilities

How to obtain probabilities of evolutionary paths for CBN and OT is detailed in Hosseini
et al. (2019) and Diaz-Uriarte and Vasallo (2019) (see S4 Text:
https://doi.org/10.1371/journal.pcbi.1007246.s006, section 3). Basically it involves
computing the product of all the transition probabilities between genotypes along all paths
from WT to the last possible genotype (for OT and CBN the genotype with all loci
mutated). For how to obtain transition probabilities see also Diaz-Colunga and Diaz-Uriarte
(2021) (specifically section 1 in S1 Appendix:
https://doi.org/10.1371/journal.pcbi.1009055.s001).
The procedures to obtain transition probabilities and probabilities of evolutionary paths for
H-ESBCN and MHN are similar to CBN: in all these methods we obtain probabilities of
paths from the transition matrix, which is itself obtained from the transition rate matrix.
The procedure with OncoBN is analogous to the one used with OT, both being untimed
models (and, in both cases, obtaining probabilities of paths, as discussed in Diaz-Uriarte and
Vasallo, 2019 is an abuse of the untimed model).

7Though for OncoBN we do not use Lik.genotype directly, as that would involve making the exact
same repeated set of calls for every individual; see the non-exported function DBN prob genotypes in file
onco-bn-process.R
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5 Generating random CPM/EvAM models, obtaining finite
samples from them, and error models

5.1 Generating random CPM/EvAM models and sampling from them

We often want to generate data under the model of a CPM. Common use cases are:

• Understand what different models imply about how the cross-sectional data looks like.

• Examine how well a method can recover the true structure when the data fulfills the
assumptions of a method. For instance, we would generate data under a particular
model and see if the method that implements that model can recover the true
structure under different sample sizes.

• Examine how a given method works, and what type of inferences it performs, when
data are generated under the model of another method. For example, what is the
output from MHN if the data are really coming from an H-ESBCN model?

Addressing the above needs involves:

1. Generating a random model.

2. Obtaining the predicted genotype frequencies from that model (see “Predicted
genotype frequencies”, section 3).

3. Obtaining a finite sample from the predicted frequencies of that model.

4. Using the data to answer whichever questions we had; for example, analyze the
sampled data with another or the same method, plot the genotype frequencies, etc.

We explain each one in turn below, with reference to evamtools functions and arguments.

1. Generating a random model.

Function random evam generates random models for OT, OncoBN, CBN, MHN,
OncoBN, and H-ESBCN. Details about the arguments of the function are provided in
its help page. No specific provision is made for randomly generating from MCCBN, as
the way to simulate is similar to CBN (generate a random poset and a random set of
lambdas).

2. Obtaining the predicted genotype frequencies from that model.

These are returned as part of the output of random evam (as well as part of the output
of evam). The predicted distribution of genotypes for a model is done assuming perfect
compliance with the model; see “Predicted genotype frequencies” (section 3).
Remember that the model in OT and OncoBN already includes deviations from the
“pure model” (see “CPMs: Error models”, section 2.3.6).

3. Obtaining a finite sample from the predicted frequencies of that model.

As the output from random evam is the same (except for the data components) to that
from evam we can pass the model to function sample CPMs.

When obtaining a finite sample, we can add sampling noise to the data. For example,
noise due to genotyping errors; the probability of errors is controlled by argument
obs noise in the call to sample CPMs.

In more detail, the process involves:

19



(a) Obtaining a finite sample without errors from the predicted genotype frequencies.

(b) If requested (i.e., if obs noise > 0), flipping a fraction obs noise of the
observations (i.e., turning 1s to 0s and 0s to 1s).

4. Using the data to answer whichever questions we had; for example, analyze the
sampled data with another or the same method, plot the genotype frequencies, etc.

To make this simpler, function sample CPMs can return the finite sample (with or
without observation noise) as a typical cross-sectional data set: a matrix where each
row is a ”sampled genotype”, in which 0 denotes no alteration and 1 alteration in the
gene of the corresponding column. This data matrix can be used directly as input for
CPM methods, for instance as argument x (the cross-sectional data) to function evam.

5.2 Error models and obtaining finite samples (or sampled genotype
counts)

When obtaining a finite sample from a model, in all cases except OT, we have always
followed the same procedure: we have first generated the predicted genotype frequencies
under the model and, if requested, then added observational (e.g., genotyping) noise to the
finite samples obtained from the predicted frequencies8. Recall that, for OncoBN, the fitted
model (and, thus, the predicted frequencies under the model) already include deviations
from the “pure model”, as measured by ϵ; see section 2.3.6, “CPMs: Error models” and
section 2.3.2, “OncoBN”.
For OT, since epos (ϵ+) reflects both observation error and true deviations from the model,
the above procedure is not possible. We need to introduce a difference between sampling
from a model specified from scratch, such as a random model returned from function
random evam, and sampling from the predictions of a fitted model.
The fitted model for OT, when fitting a true data set, includes both epos (ϵ+) and eneg

(ϵ−). Predicted genotype frequencies are obtained using function
Oncotree::distribution.oncotree with, by default, argument with.errors = TRUE,
which is what argument with errors dist ot = TRUE to evam does. Therefore, from a
fitted model, the predictions incorporate both false positive and false negative error rates, as
estimated by oncotree.fit; as explained above, however, these estimated error rates are
both the errors from the observational process (genotyping errors, for example) and true
deviations from the model. When you later call sample CPMs you can add an obs noise with
value larger than 0, but for OT, when sampling from the model fitted to observed data this
might not make sense (since epos and eneg have been used already to produce the predicted
genotype frequencies). Thus, if we use with errors dist ot = TRUE in the evam call and
then set obs noise = 0 when calling sample CPMs, the observed data we generate should be
the same (have the same distribution) as if we had used Oncotree::generate.data with
method = ‘‘D1’’, with.errors = TRUE and edge.weights = ‘‘estimated’’.9

When sampling from a model specified from scratch, such as a random model returned from
function random evam, we generate the tree (the DAG) with density as given by argument

8Obtaining a finite sample of size N given a vector of relative frequencies is done in R using the function
sample.

9We can try to divide the epos component in a component like OncoBN’s ϵ and another noise component.
Then, we would first obtain the predicted distribution via distribution.oncotree with the ϵ-like (and with
eneg = 0), sample, and add noise. If epos > eneg we can do this so that the noise added is symmetrical. This
is shown in function dot noise gd 3 in inst/miscell/OT generate data sample CPMs.R.

In that same file inst/miscell/OT generate data sample CPMs.R we show that a model obtained from
random evam with ot oncobn eps = x and sampled using sample CPMs with obs noise = y gives predictions
with the same distribution as if we had used Oncotree::generate.data on that very same oncotree object but
with epos = x+ y − (1/2) x y and eneg = y.
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graph density and the weights from uniform distributions with limits given by
ot oncobn weight min and ot oncobn weight max. In addition, we can set a value larger
than 0 for ot oncobn epos. This will be used as the epos, but not eneg, value of the OT
model. When you sample and optionally add noise, with argument obs noise to function
sample CPMs, noise is added symmetrically (as for the CBN model —section 2.3.6, “CPMs:
Error models”). Thus, we use a procedure where ot oncobn epos behaves as OncoBN’s ϵ
and obs noise is purely symmetric observational error.
Why this difference? When you use a model fitted to real data, it is sensible to use
Oncotree’s inferential machinery to estimate the epos and eneg. If you later want to
generate samples, these already include deviations from the model and noise. However,
when you simulate a model, there is no data and thus no way to estimate epos and eneg.
Therefore, it is sensible to split errors into two distinct pieces, which is also coherent with
what we do with the rest of the methods: deviations from the model, and noise.

6 Random EvAM models and transitive reduction

As of now, the generation of random EvAM models uses transitively reduced graphs (we call
mccbn::random poset with argument trans reduced = TRUE). This does not decrease the
number of models that can be expressed when using CBN. However, it can limit the range of
models when we can mix AND, OR, XOR in the same model. The following examples
illustrate how this makes certain models impossible.

Figure 1: Non-transitively reduced DAG, OR and AND (left), non-transitively reduced DAG,
OR and XOR (center), transitively reduced DAG.

• Under the left-most DAG in Fig. 1 we cannot observe genotype BCD.

• Under the center DAG in Fig. 1 we cannot observe genotype ACD.

• Under the right-most DAG, which is the transitive reduction of the above two graphs,
we can observe both BCD and ACD.

Can we imagine biological scenarios where the left-most or center scenarios in Fig. 1 would
apply? Yes. We don’t recall seeing them in the literature, though. If this is deemed relevant,
it is just a matter of changing trans reduced = TRUE when we are simulating HESBCN
models inside function random evam.
You can of course construct the non-transitively reduced graphs “by hand” (creating the
data frame with the appropriate structure) or, much simpler, using the Shiny web app.
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7 H-ESBCN: details and examples of using λs and
computing transition rate matrices and predicted genotype
frequencies

Here I provide full details about how we interpret and use the results from the method
described in Angaroni et al. (2021). I do this here because, in contrast to CBN or MHN,
there is no existing previous code or examples that do this, and we found some potentially
confusing issues. I have turned this into a specific section so as not to break the flow of the
former sections.

7.1 Lambdas from the output: ”Best Lambdas” and ”lambdas matrix”

The output returned by the H-ESBCN C code contains a ”Best Lambdas” vector. The
output returned by function import.hesbcn (that we have included in the code, in file
HESBCN import.hesbcn.R) has an object called ”lambdas matrix” where each of the
lambdas for a gene is divided by the number of parents. This can be checked in any of the
examples in the PMCE repository. Code that shows three examples, with XOR, OR, AND,
is available under ”inst/miscell/examples/HESBCN-lambdas-from-examples.R”.
It is the output from ”Best lambdas” (i.e., the undivided lambdas) that are ”[the] rates of
the Poisson processes of the continuous-time HMM, associated with the vertices of the
model, which allow one to estimate the expected waiting time of a node, given that its
predecessor has occurred.” (p. 756). (What is the division? An operation that modifies an
internal data structure, and just a temporary operation, done merely for implementation
purposes. In line 95 of the code —as of current version, in
https://github.com/BIMIB-DISCo/PMCE/blob/main/Utilities/R/utils.R— the divided
lambdas are again summed, so the partition disappears: ”curr in lambda =
sum(hesbcn$lambdas matrix[,curr node])”, and it is that value that is used in further
downstream computations; email with the authors on 2021-07-09). The “Best lambdas” are
returned by our modified import.hesbcn function.

7.2 Interpreting OR and XOR (and AND)

I find Figure 1C of Angaroni et al. (2021) possibly confusing. First, the non-confusing part:
node ”D” has a rate when exactly one of B XOR C has occured, and node ”G” some other
rate when E or F or both E and F have occurred. (Note: the figure shows τs, not λs. The
comments here refer to the λs).
Now the (for me, at least) possibly confusing part: it seems that the node called ”B xor C”
is such that B and C have the same rates of dependencies on A; in other words, it would
seem to imply that λB = λC . Similarly, the node called ”E or F” seems to indicate that
both E and F have the same rate, so λE = λF . But this need not be so. In fact, virtually all
of the examples we have looked at, and the examples in their output, do not satisfy that the
rates to the genes that are part of a XOR, OR, or AND relationship are the same. For
instance, in the example above of Bladder Urothelial Carcinoma (see
”inst/miscell/examples/HESBCN-lambdas-from-examples.R”), KMT2D depends on
KMT2C and TP53, but the rate for KMT2C, λKMT2C = 0.1991 and that for TP53,
λTP53 = 0.8062.
Remember that the λ for a gene is the rate of the process until that mutation appears and is
fixated, given all the dependencies of that gene are satisfied (which is, of course, the same
interpretation as under CBN). Again: ”[the] rates of the Poisson processes of the
continuous-time HMM, associated with the vertices of the model, which allow one to
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estimate the expected waiting time of a node, given that its predecessor has occurred.” (p.
756).
But the rate at which the parents are satisfied can differ (as it was the case for CBN). A
difference with respect to CBN is that, with CBN, if a gene D depends on three genes A, B,
C, regardless of the lambdas of each of A, B, C, D can only happen once all of A, B, C are
present. With H-ESBCN and with OR and XOR relationships this is no longer the case: one
can see D with only A, for example.
What if some genes depend with and AND, others with a XOR and other with a OR? Just
apply the rules to each type of dependency: in the HESBCN model if a gene depends on a
set of genes, it has the same type of dependency on all the genes of that set.

7.3 Predicted genotype frequencies

Once we have the transition rate matrix, obtaining the predicted genotype frequencies uses
the same procedure as for CBN and MHN; see section 3.1, “Predicted genotype frequencies
for CBN, MCCBN, MHN, H-ESBCN”.

7.4 An example with OR and XOR

In this example:

• A, B, C depend on none.

• D depends, with an OR, on both A and B

• E depends, with an XOR, on B and C

• Transition rate matrix is shown below: rows are origin, column destination. λs are
those from ”Best Lambdas”.

(This example is also shown in section 2.3.4, “Hidden Extended Suppes-Bayes Causal
Networks (H-ESBCN)”).
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7.5 Three examples from actual analysis

• The code in inst/miscell/HESBCN-OR-XOR-AND-lambda-and-rates.R contains
examples of how we use those lambdas (the n, number of steps, used is ridiculously
small, and set to these tiny values just for the sake of speed).

1. OR

• Suppose output such as this (again, see file
inst/miscell/HESBCN-OR-XOR-AND-lambda-and-rates.R for how to reproduce
it).

$adjacency_matrix

Root A B C D

Root 0 1 1 0 0

A 0 0 0 1 1

B 0 0 0 1 1

C 0 0 0 0 0

D 0 0 0 0 0

$lambdas_matrix

Root A B C D

Root 0 8.083 2.585 0.000 0.0000

A 0 0.000 0.000 8.914 0.2062

B 0 0.000 0.000 8.914 0.2062

C 0 0.000 0.000 0.000 0.0000

D 0 0.000 0.000 0.000 0.0000

$parent_set

A B C D

"Single" "Single" "XOR" "OR"

$lambdas

[1] 8.0833 2.5854 17.8277 0.4124

$edges

From To Edge Lambdas Relation

1 Root A Root -> A 8.0833 Single

2 Root B Root -> B 2.5854 Single

3 A C A -> C 17.8277 XOR

4 B C B -> C 17.8277 XOR

5 A D A -> D 0.4124 OR

6 B D B -> D 0.4124 OR

• From the above output, these are the lambdas:
λA = 8.0833, λB = 2.5854, λC = 17.8277, λD = 0.4124.

• Focusing only on A, B, D, to see gene D we can follow four paths.

– The first two involve only two mutations:
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∗ WT → A → AD

∗ WT → B → BD

∗ The first is much faster, since the rate for the transition from WT to A is
8.1 compared to 2.6 of the transition B to D (from competing
exponentials, the probabilities of moving to A and B are 0.76 and 0.24,
respectively).

– In the other two paths D is the third gene to appear:

∗ WT → A → AB → ABD

∗ WT → B → AB → ABD

∗ These two paths take the same time, on average: both A and B need to
appear (with rates given by λA, λB) and then we need D to appear (λD).

– Similarly, to get to genotype ”A, B, D” we can follow these paths:

∗ WT → A → AB → ABD

∗ WT → B → AB → ABD

∗ WT → A → AD → ABD

∗ WT → B → BD → ABD

∗ All of them take the same expected time, as we need A, B, and D to
happen, each governed by λA, λB, λD, respectively.

• In terms of fitness, if we used OncoSimulR (see additional document “Using
OncoSimulR to get accessible genotypes and transition matrices”), we would
write, for the fitness of AB: (1 + λA)(1 + λB), for AD (1 + λA)(1 + λD), and for
ABD (1 + λA)(1 + λB)(1 + λD).

– Note, specifically, that genotypes AD and BD are not fitness equivalent,
unless λA = λB.

2. XOR

• Using the above example, and focusing only on A, B, C, these are the only ways
of seeing a C:

– WT → A → AC

– WT → B → BC

– As we have a XOR, no routes can go through AB.

– The first is much faster and common than the second (λA = 8.1;λB = 2.6).

– Fitness (again, this is relevant if using, for example, OncoSimulR) of AC is
(1 + λA)(1 + λC) and of BC (1 + λB)(1 + λC).

3. Both OR and XOR

• There is nothing new. As an example, gaining both C and D mutations.

– WT → A → AC → ACD

– WT → B → BC → BCD

– WT → A → AD → ACD

– WT → B → BD → BCD

– There is no path going through AB since C has a XOR relationship on A and
B.

– In the first path we first need to wait for A to happen (rate λA) then C (λC)
then D (λD).
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– Same for the second, with B instead of A. The first path is much more
common than the second.

– The third path transposes the order of occurrence of D and C, but takes the
same average time as the third. Note that the fitness of the final genotype is
the same through both routes, only the order of steps changes.

– The fourth path transposes the order of occurrence of D and C, but takes the
same average time as the fourth. Note that the fitness of the final genotype is
the same through both routes, only the order of steps changes.

7.6 Combining AND, OR, XOR?

Nothing changes. Use the rules for AND where there is an AND, XOR where there is a
XOR, OR where there is an OR. Again, in the HESBCN model if a gene depends on a set of
genes, it has the same type of dependency on all the genes of that set.
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8 FAQ

8.1 Web app, figures

8.1.1 In the figures, some times I get the error “Figure margins too large”

Solution: try to reduce the length of the gene names.
Longer explanation: It is impossible to accommodate, automatically, all possible use cases in
terms of length of genotypes (e.g., you analyzed a data set with 10 genes, and some have
names that are many characters long). We try to catch mistakes, but we might have missed
some.

8.1.2 In the figures, some times genotype names are truncated

This problem is related to the previous one: with very large genotype or gene names,
sometimes the only way to prevent the ”Figure margins too large” error is to make figure
margins smaller, which can result in truncation.

8.1.3 In the figures, some times the histograms are too tiny

Similar to previous problems: genotype or gene names are probably too large, so to
accommodate them we need to make the rest of the plot smaller.

8.2 Web app, saved output

8.2.1 When data are saved, genes without mutations are excluded

When creating user data (for instance, when adding new genotypes), any gene that has no
mutations is automatically excluded from the saved data, regardless of the setting for
number of genes. This is a feature, not a bug. For example, suppose you set the number of
genes to 3, but you only specify frequencies, or counts, for genotypes ”A” and ”A, B”. The
data set will only contain columns for genes A and B (since gene C has no mutations and it
would be excluded during the analyses). See also 8.5.

8.3 Web app: could we reduce the number of required clicks?

This issue was raised by one reviewer: Editing values inside the app typically must be
confirmed by an additional button press or key combination. It would be more convenient if
values updated automatically after pressing Enter or switching the input field.
We have taken the liberty of adding it to the FAQ because it clarifies our design decisions
and provides additional information about the behavior of the GUI.
We have tried to minimize additional button presses. Below we provide a description of the
current behavior, with detailed explanations of the reasons for the behavior. There are few
remaining cases where additional button presses or key combinations could be avoided.

• “Set the number of genes”: moving the slider has an immediate effect.

– For “Enter genotype frequencies manually”, new gene names are immediately
added to “Mutations” in the “Add genotypes” box.

– For DAG, new gene names are immediately added to the “To” and “From” lists
under 1. Define DAG, “New edge”.

– For MHN, it immediately resizes the log-Θ matrix; if data have already been
generated, and to prevent the data and the log-Θ matrix from being in
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inconsistent states, on every change of number of genes a new data set is
generated.

– (This is not applicable to “Upload file”: setting the number of genes is not
available here.)

• “Use different gene names” requires clicking on “Use these gene names” (on the popup
box that is opened on clicking on “Use different gene names”). This is on purpose;
first, forcing the change of gene names on switching input fields could lead to
disconcerting behavior especially because the renaming is often an operation of
renaming the complete set of genes, not just one of them; moreover, we try to convey
that using this option carelessly will lead to confusion (several warnings are provided
to minimize this careless use: on the box itself and on the tooltip). If users decide they
do not want to use different names after all, they can abort the operation by clicking
on “Dismiss”.

Since this option will be used sparingly and consciously, we think forcing explicit clicks
and not renaming on switching input field is the appropriate behavior.

• When uploading a file (under “Upload file”), there is no need to click on additional
buttons after entering a name in “Name for data”. The user enters a string for the
name, and then clicks on “Load data”; the entered string will become the name of the
data when the upload is finished (and that data, with that name, will be shown on the
left side, under “Examples and user’s data”).

• For DAG modification/creation, it is necessary to click on “Add edge” or “Remove
edge” after selecting the “From” and “To” nodes. The alternative (adding a
non-existent edge or removing an existing edge as soon as two nodes are selected),
even if it removes one click, gives rise to non-obvious behavior that can be hard to
understand. “Add/Remove edge” require an extra click but this extra click makes the
behavior clear and explicit, and allow for correcting the From/To nodes before
changing the DAG. Moreover, because we have separate buttons for “Add edge” and
“Remove edge”, user errors such as trying to remove an edge that does not exist, or
trying to add an edge that already exists, are much easier for users to understand:
when the error message pops-up, the clicked button (“Add edge”, “Remove edge”) is
still colored gray.

• For DAGs, when changing entries in the DAG table, as soon as “Ctrl + Enter” is
pressed, new values of the data are generated according to the new parameters,
without any need to press “Generate data from DAG model”.

(Several parameters and/or relations can be changed without clicking “Ctrl + Enter”
until all changes have been made: we move between entries of the table with Tab and
“Shift + Tab”, and click “Ctrl + Enter” only at the end).

• For MHN, if a data set has been generated previously, when changing entries in the
MHN table, as soon as “Ctrl + Enter” is pressed, new values of the data are generated
according to the new parameters, without any need to press “Generate data from
MHN model”. (As above, several entries of the table can be changed without clicking
“Ctrl + Enter” until all changes have been made; we can move between cells of the
table with Tab, and click “Ctrl + Enter” only at the end).

Why generate new data for MHN on log-Θ matrix modification only if data had been
previously generated, but generate it immediately for DAGs even if data had not been
modified?
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– We, and the users in our lab, seem to build DAG models step by step, and seem
to appreciate the immediate feedback from adding/removing edges, changing the
type of relationship, or modifying λs or conditional probabilities.

– We, and the user in our lab, seem to build MHNs by first thinking about a pattern
of relationships that involves more than one entry of the log-Θ matrix. Once the
initial model is specified, “Generate data” is clicked. After that has happened,
and to avoid the data and the log-Θ matrix from being in inconsistent states, we
always force a resampling of data when an entry of the matrix is changed.

– The difference in behavior would, at most, involve one extra click with MHN.

• For DAGs, when changing the “Type of model” (OT, OncoBN, CBN/H-ESBCN), if a
data set has been generated previously, new data are immediately generated, without
any need to press “Generate data from MHN model”. This both saves one click and
prevents the model and the data from possibly being in inconsistent states.

If no data have been generated we do not generate data. Why? For reasons similar to
above. In our experience, if there is no data present, users are likely to change the
model and then start modifying the DAG (adding/removing edges; changing type of
relationships; changing parameters). It seems reasonable to delay the sampling until
the sampling becomes necessary to prevent any possibly ambiguities or inconsistencies.

• For both DAG and MHN, switching from the input fields of “Number of genotypes to
sample”, “Observational noise”, and “epos, ϵ” (only for DAG) will not lead to
generating new data unless “Generate data from DAG/MHN” is clicked. In our
experience, these three parameters are often modified together; updating the data
immediately after switching from the input field leads to intermediate data updates
that get in the way of “modify this set of parameters, and then update according to
the new set”. Moreover, the operation could be slightly expensive, computationally, if
“Number of genotypes to sample” is a very large number.

Note, however, that we have changed the behavior of the app, so that changes to
settings of “Number of genotypes to sample” and “Observational noise” are now
preserved (within a session) and they are common to MHN and DAG. We think this
will minimize needing to repeatedly change them to the desired settings (as we think it
is reasonable that if a user is, say, using a sample size of 10000, this setting will be
desired for both DAGs and MHN); this also prevents having to set them again to the
desired value after, for example, moving to “Upload file” and back.

• When genotype data are modified (under “Change genotype’s counts”, and with the
same behavior in “Upload file”, “Enter genotype frequencies manually”, “DAG”,
“MHN”), as soon as the user enters “Ctrl + Enter”, the histogram displaying genotype
frequencies is updated.

Note, therefore, that a user can choose to modify the histogram with every change of a
genotype, or modify several genotypes without clicking “Ctrl + Enter” until the end:
modify the number, move with Tab to the next, modify, move with Tab to the next,
etc, and only update the histogram when all modifications have been done with a
single “Ctrl + Enter”.

• The “Rename the data” box requires entering a name and then clicking on the button
“Rename the data”. This is also on purpose: we think renaming the data should be a
very conscious action, and users will notice that, as soon as the “Rename the data”
button is clicked, that name appears on the left side, with a blue button denoting it is
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the current, selected one on which modifications are being made. This should also
prevent unwanted proliferation of data names that the user is not fully aware of having
explicitly created. Asking for a click here, instead of renaming immediately after
switching away from the input field, therefore, seems reasonable.

• Options under “Advanced options”: options are set just by changing them, without
any additional clicks. For example, the “Number of MCMC iterations” (under
“H-ESBCN options”) can be changed from the default 200000 to, say, 500000 just by
deleting the 2 and putting a 5 without additional clicks. Likewise, changing the
“Model” under “OncoBN options” requires clicking on the down arrow of the pull
down menu and clicking on “Conjunctive”, without additional clicks.

• In the “Output” tab, virtually all operations do not require any additional clicks and
are executed immediately. “CPMs to show” does not require extra clicks, but has a
small lag of about 0.9 seconds from the first click: redrawing is a potentially expensive
operation, and we do not start it until giving some reasonable time for the user to
click/unclick methods to show. “Download CPM results and analyzed data” opens the
standard popup box that allows to change the name and then asks for clicking on
“Save”.

In summary, thus, in most cases, few or none additional button presses are needed. We
think that those that remain fall into the following cases:

• The additional button or key press is unavoidable becaus of the way Shiny works.

• Not requiring this additional button or key press could lead to surprising and hard to
understand behavior.

• Potentially expensive operations that we only want to execute when the user is done
changing values.

8.4 Web app: some genes have disappeared, and instead I see a name
with an underscore (” ”)

Those events were indistinguishable, because they are completely aliased, i.e.,
indistinguishable, because they have identical patterns —identical columns in the data
matrix—.
There are example in the additional examples files.

8.5 Web app: the gene number slider changes automatically on changing
data set name

This is on purpose to keep consistency and also so that we save only the needed data. See
also 8.2.1.

8.6 Web app: Names of genes under ”Mutations” in Create, are resorted
on save/rename

This is on purpose. As explained by the tooltip, the list of genes next to ”Mutations” is kept
sorted (”natural order”) showing first the genes in existing genotypes, and then other genes
up to ””Number of genes”. The list will be resorted when new genes are added to genotypes.
”Mutations” is just a list of candidate gene names. You can see more (or fewer, up to the
number of genes in your genotypes) by moving the slider of ”Number of genes”. On
renaming of the data, we trigger a counting of the genes used, reset the slider of ”Number of
genes”, and reorder the gene names next to ”Mutations”.
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8.7 Web app: I want to rename my genes, after I made a complex graph,
and don’t want to reset it. What can I do?

This is borderline behavior, and we do not encourage it, but you can do it if you set all
genotypes to 0 via the ”Change genotype’s counts”. Why is this not encouraged? Because
the code is not intended for this.

8.8 Web app: the names of data sets are separate for DAG, MHN, etc

This is on purpose: it should help users organize data and experiments.

8.9 Web app: I do not find my data under ’Examples and user’s data’

Maybe you are not looking in the right place? If you created your data using DAGs, it will
not be shown under MHN, for example; see 8.8.

8.10 Web app: Changing gene number with MHN and forced generation
of data.

With MHN (but not DAG) , changing number of genes forces the generation of data from
the model (as if you had clicked on “Generate data from MHN model”) to prevent
inconsistent states between the data and the model. This is on purpose.
Under MHN, adding a gene amounts to adding a row and a column, and removing a gene
removing a row and a column; if we did not force a resample and you forgot to do it, the
genotype data could be left in a state completely inconsistent with the model. In contrast,
with DAGs, changing gene number has no effect on the model until you add/remove edges.
(This is why adding/removing edges from a DAG forces data generation.)

8.11 Why haven’t you used method X?

We have included here what we believe are the current state-of-the-art methods that have
existing public implementations that run in reasonable time. After searching the literature,
we have included any method that could be deemed appropriate. We have, in fact, provided
access to two very recent methods: H-ESBCN and OncoBN (and their github repos show we
have contributed bug reports).
Among the remaining methods available, most of them do not seem to be developed nor
used anymore. For some of these methods, their authors have developed newer methods that
seem to have superseded the former methods. Some other methods have dependencies on
external libraries that are not open source. And, of course, we cannot provide access to
methods that have no software, or have software that will run only under proprietary
systems. Some further comments are provided in S4 Text in Diaz-Uriarte and Vasallo (2019)
(https://doi.org/10.1371/journal.pcbi.1007246.s006).
If you think we have overlooked a method that should be included, please let us know.

8.12 With OncoBN sometimes I obtain DAGs that are not transitively
reduced

Yes, that can happen. See details here
https://github.com/phillipnicol/OncoBN/issues/5. There is an example of this in the
additional examples.

32

https://doi.org/10.1371/journal.pcbi.1007246.s006
https://github.com/phillipnicol/OncoBN/issues/5


8.13 With H-ESBCN sometimes I obtain DAGs that are not transitively
reduced

Yes, that can happen too. Again, there is an example of this in the additional examples.

8.14 In the DAG figures, why do nodes with two or more incoming edges
have only a single annotated edge with a number?

Because the number, which is the λ (CBN, HESBCN) or θ (OncoBN) is the rate (CBN,
HESBCN) or probability, conditional on the assumptions indicated by the DAG being
satisfied. So the λ or θ are per node, not per edge. For instance, suppose gene C depends on
both A and B (there is an AND); and you see a number of 0.7. That is the λ or θ for
observing C mutated when both A and B are mutated.
And why then not annotate the nodes, instead of the edges? Because in our experience:

• Annotating nodes leads to more confusing figures.

• Annotating edges shows what transitions are likely/fast, an idea not conveyed by
annotating nodes.

8.15 Do sampled genotype frequencies and counts contain observation
noise? And predicted genotype frequencies?

For all models except OT, predicted genotype frequencies do not have observation noise
added. The OT model itself estimates noise, and thus predicted frequencies obtained from
models fitted to observed data incorporate observation noise. See “CPMs: Error models”
(section 2.3.6).
When we obtain a finite sample from the predicted frequencies, you can decide to add
observation noise with argument obs noise to function sample CPMs; what happens with
OT depends on whether the predictions are from a simulated model or a model fit to
observed data; see details in “Error models and obtaining finite samples (or sampled
genotype counts)” (section 5.2).

8.16 Docker and setting up your own Shiny app

8.16.1 I want to setup my own Shiny app with different default “Advanced
options”

In file EvAM-Tools/evamtools/inst/shiny-examples/evamtools/ui.R search for
“Advanced options” and modify the defaults to whatever you want.

8.16.2 How can I use the Shiny app in a local intranet with load balancing
using multiple Docker instances

This is well beyond the scope of this document and there are many options available. One
that can work (and this is more or less what we actually do) is the following:

• Start multiple Docker instances (say, 20) by changing the range of ports, for example,
3010 to 3030.

• Use HAProxy (https://www.haproxy.org/) so that you have a single entry point for
all requests to the service that are then distributed, with load balancing, to the 20
instances. You will want to use “sticky connections” (see the HAProxy
documentation).

As said above, this is just a sketch of the basic procedure. There are many other options.
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8.16.3 If I use the Docker image for the package (rdiaz02/evamrstudio), can I
run the Shiny app?

Yes, you can. Just start a browser as explained in the README (https://github.com/
rdiaz02/EvAM-Tools#how-to-run-the-r-package-from-the-docker-image). Then, once
in RStudio, in the R console type runShiny() and you will have the interactive Shiny app
open. But even if you can do it, it is not clear why you’d want to do this: if you only want
to run the Shiny app, the Docker image rdiaz02/evamshiny is lighter and the steps to launch
it much faster.

8.16.4 Why aren’t you using Shiny Server?

Because we did not see it as necessary or convenient. If you want to run Shiny interactively
from an R session load evamtools and call function runShiny; no need for Shiny Server.
If we want to run Shiny as a service, with Docker images it is rather straightforward to
launch a bunch Docker instances and use HAProxy to access to them using load-balancing
(see 8.16.2) or any other such similar solution.
Moreover, notice this in the Shiny Server documentation
(https://shiny.rstudio.com/articles/shiny-server.html): “Shiny Server will host
each app at its own web address and automatically start the app when a user visits the
address. When the user leaves, Shiny Server will automatically stop the app. ” That is not
exactly what we want. We want the containers to be up and running, ready to answer
requests as they come with minimal latency. Moreover, a single Shiny Server would have
given access to a single instance of the app (so that if two or more users access the app, one
of the users has to wait while R is busy executing what the other user is running); to give
users access to multiple simultaneous instances we would have needed, for example, multiple
Docker images each with its own Shiny Server.
However, we might be missing something; if you think Shiny Server would allow or ease
some use cases, please let us know.

8.16.5 I want to build my own Docker images

If you want to modify the Docker images, modify the Dockerfiles: Dockerfile-evam-rstudio
(for the RStudio Dockerfile that launches RStudio) or Dockerfile-evam-shiny (well, for the
Dockerfile that creates the container to run shiny).
Then, from the ‘EvAM-Tools‘ directory run one or both of:

docker build -f Dockerfile-evam-shiny --tag somename .

docker build -f Dockerfile-evam-rstudio --tag somename .

You can now run these images, as explained in the README file..
Note: it is possible, and actually a better idea, to run docker without sudo; look a the
Docker documentation: https://docs.docker.com/engine/security/rootless/).

What if creating the image fails because of no internet connection from the
container Creating the above image requires installing R packages and that might fail
because the Docker container cannot connect with the internet. The following might help:
https://superuser.com/a/1582710, https://superuser.com/a/1619378. In many cases,
doing sudo systemctl restart docker might be enough.
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Cleaning the build cache and stale old images Sometimes (e.g., if the base
containers change or you want to remove build cache) you might want to issue

docker builder prune

or the much more drastic

docker system prune -a

Please, read the documentation for both.

Copying docker images from one machine to another Yes, that can be done. See
here, for example: https://stackoverflow.com/a/23938978

9 License and copyright

This work is Copyright, ©, 2022, Ramon Diaz-Uriarte.
Like the rest of this package (EvAM-Tools), this work is licensed under the GNU Affero
General Public License. You can redistribute it and/or modify it under the terms of the
GNU Affero General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
details.
You should have received a copy of the GNU Affero General Public License along with this
program. If not, see https://www.gnu.org/licenses/.
The source of this document and the EvAM-Tools package is at
https://github.com/rdiaz02/EvAM-Tools.
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