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1 Introduction

OncoSimulR is an individual- or clone-based forward-time genetic simulator for
biallelic markers (wildtype vs. mutated) in asexually reproducing populations without
spatial structure (perfect mixing). Its design emphasizes flexible specification of
fitness and mutator effects.

OncoSimulR was originally developed to simulate tumor progression with emphasis
on allowing users to set restrictions in the accumulation of mutations as specified, for
example, by Oncogenetic Trees (OT: Desper et al., 1999; Szabo & Boucher, 2008) or
Conjunctive Bayesian Networks (CBN: Beerenwinkel, Eriksson, et al., 2007; Gerstung
et al., 2009; Gerstung, Eriksson, et al., 2011), with the possibility of adding passenger
mutations to the simulations and allowing for several types of sampling.

Since then, OncoSimulR has been vastly extended to allow you to specify other types
of restrictions in the accumulation of genes, such as the XOR models of Korsunsky et
al. (2014) or the “semimonotone” model of Farahani & Lagergren (2013). Moreover,
different fitness effects related to the order in which mutations appear can also
be incorporated, involving arbitrary numbers of genes. This is very different from
“restrictions in the order of accumulation of mutations”. With order effects, described
in a recent cancer paper by Ortmann and collaborators (Ortmann et al., 2015),
the effect of having both mutations “A” and “B” differs depending on whether “A”
appeared before or after “B” (the actual case involves genes JAK2 and TET?2).

More generally, OncoSimulR now also allows you to specify arbitrary epistatic inter-
actions between arbitrary collections of genes and to model, for example, synthetic
mortality or synthetic viability (again, involving an arbitrary number of genes, some
of which might also depend on other genes, or show order effects with other genes).
Moreover, it is possible to specify the above interactions in terms of modules, not
genes. This idea is discussed in, for example, Raphael & Vandin (2015) and Gerstung,
Eriksson, et al. (2011): the restrictions encoded in, say, CBNs or OT can be consid-
ered to apply not to genes, but to modules, where each module is a set of genes (and
the intersection between modules is the empty set) that performs a specific biological
function. Modules, then, play the role of a “union operation” over the set of genes in
a module. In addition, arbitrary numbers of genes without interactions (and with
fitness effects coming from any distribution you might want) are also possible.

You can also directly specify the mapping between genotypes and fitness and, thus,
you can simulate on fitness landscapes of arbitrary complexity.

It is now (released initially in this repo as the freq-dep-fitness branch on February
2019) also possible to simulate scenarios with frequency-dependent fitness, where the
fitness of one or more genotypes depends on the relative or absolute frequencies of
other genotypes, as in game theory and adaptive dynamics. This makes it possible
to model predation and parasitism, cooperation and mutualism, and commensalism.
It also allows to model therapeutic interventions (where fitness changes at specified
time points or as a function of the total populations size or as a function of arbitrary
user-defined variables); in particular, it is possible to emulate adaptive therapy

(Hansen & Read (2020b); Hansen & Read (2020a)).



Simulations can start from arbitrary initial population compositions and it is also
possible to simulate multiple species. Thus, simulations that involve both ecological
and evolutionary processes are possible.

Mutator /antimutator genes, genes that alter the mutation rate of other genes (Gerrish
et al., 2007; Tomlinson et al., 1996), can also be simulated with OncoSimulR
and specified with most of the mechanisms above (you can have, for instance,
interactions between mutator genes). And, regardless of the presence or not of other
mutator/antimutator genes, different genes can have different mutation rates.

Simulations can be stopped as a function of total population size, number of mutated
driver genes, or number of time periods. Simulations can also be stopped with a
stochastic detection mechanism where the probability of detecting a tumor increases
with total population size. Simulations return the number of cells of every geno-
type/clone at each of the sampling periods and we can take samples from the former
with single-cell or whole- tumor resolution, adding noise if we want. If we ask for
them, simulations also store and return the genealogical relationships of all clones
generated during the simulation.

The models so far implemented are all continuous time models, which are simulated
using the BNB algorithm of Mather et al. (2012). The core of the code is implemented
in C++, providing for fast execution. To help with simulation studies, code to
simulate random graphs of the kind often seen in CBNs, OTs, etc, is also available.
Finally, OncoSimulR also allows for the generation of random fitness landscapes
and the representation of fitness landscapes and provides statistics of evolutionary
predictability.
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1.1 Key features of OncoSimulR

As mentioned above, OncoSimulR is now a very general package for forward genetic
simulation, with applicability well beyond tumor progression. This is a summary of
some of its key features:

* You can specify arbitrary interactions between genes, with arbitrary fitness
effects, with explicit support for:

— Restrictions in the accumulations of mutations, as specified by Oncogenetic
Trees (OTs), Conjunctive Bayesian Networks (CBNs), semimonotone
progression networks, and XOR relationships.

— Epistatic interactions including, but not limited to, synthetic viability
and synthetic lethality.

— Order effects.
e You can add passenger mutations.
e You can add mutator/antimutator effects.
o Fitness and mutation rates can be gene-specific.

e You can add arbitrary numbers of non-interacting genes with arbitrary fitness
effects.

o you can allow for deviations from the OT, CBN, semimonotone, and XOR
models, specifying a penalty for such deviations (the s, parameter).

e You can conduct multiple simulations, and sample from them with different
temporal schemes and using both whole tumor or single cell sampling.

» You can stop the simulations using a flexible combination of conditions: final
time, number of drivers, population size, fixation of certain genotypes, and a
stochastic stopping mechanism that depends on population size.

» Right now, three different models are available, two that lead to exponential
growth, one of them loosely based on Bozic et al. (2010), and another that
leads to logistic-like growth, based on McFarland et al. (2013).

e You can use large numbers of genes (e.g., see an example of 50000 in section
6.5.3).

o Simulations are generally very fast: I use C++ to implement the BNB algorithm
(see sections 18.5 and 18.6 for more detailed comments on the usage of this
algorithm).

e You can obtain the true sequence of events and the phylogenetic relationships
between clones (see section 18.1 for the details of what we mean by “clone”).

» You can generate random fitness landscapes (under the House of Cards, Rough
Mount Fuji, or additive models, or combinations of the former and under the
NK model) and use those landscapes as input to the simulation functions.

10



» You can plot fitness landscapes.
» You can obtain statistics of evolutionary predictability from the simulations.

e You can now also use simulations with frequency-dependent fitness: fitness
(birth rate) is not fixed for a genotype, but can be a function of the frequecies
of the clones (see section 10). We can therefore use OncoSimulR to examine,
via simulations, results from game theory and adaptive dynamics and study
complex scenarios that are not amenable to analytical solutions. More generally,
we can model predation and parasitism, cooperation and mutualism, and
commensalism.

o It is possible to start the simulation with arbitrary initial composition (section
6.7) and to simulate multiple species (section 6.8). You can thus run simulations
that involve both ecological and evolutionary processes involving inter-species
relationships plus genetic restrictions in evolution.

o It is possible to simulate many different therapeutic interventions. Section 15
shows examples of interventions where certain genotypes change fitness (because
of chemotherapy) at specified times. More generally, since fitness (birth rates)
can be made a function of total populations sizes and/or frequencies (see section
10), many different arbitrary intervention schemes can be simulated. Possible
models are, of course, not limited to cancer chemotherapy, but could include
antibiotic treatment of bacteria, antiviral therapy, etc.

The table below, modified from the table at the Genetics Simulation Resources (GSR)
page, provides a summary of the key features of OncoSimulR. (An explanation of
the meaning of terms specific to the GSR table is available from https://popmodels.
cancercontrol.cancer.gov/gsr/search/ or from the Genetics Simulation Resources
table itself, by moving the mouse over each term).

11
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Table 1: Key features of OncoSimulR. Modified
from the original table from https://popmodels.ca
ncercontrol.cancer.gov /gsr/packages/oncosimulr

/#detailed .

Attribute Category

Attribute

Target
Type of Simulated Data
Variations

Simulation Method
Type of Dynamical Model
Entities Tracked

Input

Output
Data Type

Sample Type
Evolutionary Features
Mating Scheme
Demographic
Population Size Changes

Fitness Components
Birth Rate

Death Rate

Natural Selection
Determinant

Models

Mutation Models

Haploid DNA Sequence

Biallelic Marker, Genotype or Sequencing Error
Forward-time

Continuous time

Clones (see 18.2)

Program specific (R data frames and matrices
specifying genotypes’ fitness, gene effects, and
starting genotype)

Genotype or Sequence, Individual Relationship
(complete parent-child relationships between
clones), Demographic (populations sizes of all
clones at sampling times), Diversity Measures
(LOD, POM, diversity of genotypes), Fitness
Random or Independent, Longitudinal, Other
(proportional to population size)

Asexual Reproduction

Exponential (two models), Logistic (McFarland
et al., 2013)

Individually Determined from Genotype (models
“Exp”, “McFL”, “McFLD”).
Frequency-Dependently Determined from
Genotype (models “Exp”, “McFL”, “McFLD”)
Individually Determined from Genotype (model
“Bozic”), Influenced by Environment
—population size (models “McFL” and “McFLD”)

Single and Multi-locus, Fitness of Offspring,
Environmental Factors (population size,
genotype frequencies)

Directional Selection, Multi-locus models,
Epistasis, Random Fitness Effects,
Frequency-Dependent

Two-allele Mutation Model (wildtype, mutant),
without back mutation
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Attribute Category Attribute

Events Allowed Varying Genetic Features: change of individual
mutation rates (mutator/antimutator genes)

Spatial Structure No Spatial Structure (perfectly mixed and no
migration)

Further details about the original motivation for wanting to simulate data this way
in the context of tumor progression can be found in Diaz-Uriarte (2015), where
additional comments about model parameters and caveats are discussed.

Are there similar programs? The Java program by Reiter et al. (2013), TTP, offers
somewhat similar functionality to the previous version of OncoSimulR, but it is
restricted to at most four drivers (whereas v.1 of OncoSimulR allowed for up to
64), you cannot use arbitrary CBNs or OTs (or XORs or semimonotone graphs) to
specify restrictions, there is no allowance for passengers, and a single type of model
(a discrete time Galton-Watson process) is implemented. The current functionality
of OncoSimulR goes well beyond the the previous version (and, thus, also the TPT
of Reiter et al. (2013)). We now allow you to specify all types of fitness effects
in other general forward genetic simulators such as FFPopSim (Zanini & Neher,
2012), and some that, to our knowledge (e.g., order effects) are not available from
any genetics simulator. In addition, the “Lego system” to flexibly combine different
fitness specifications is also unique; by “Lego system” I mean that we can combine
different pieces and blocks, similarly to what we do with Lego bricks. (I find this an
intuitive and very graphical analogy, which I have copied from Hothorn et al. (2006)
and Hothorn et al. (2008)). In a nutshell, salient features of OncoSimulR compared
to other simulators are the unparalleled flexibility to specify fitness and mutator
effects, with modules and order effects as particularly unique, and the options for
sampling and stopping the simulations, particularly convenient in cancer evolution
models. Also unique in this type of software is the addition of functions for simulating
fitness landscapes and assessing evolutionary predictability.

1.2 What kinds of questions is OncoSimulR suited for?

OncoSimulR can be used to address questions that span from the effect of mutator
genes in cancer to the interplay between fitness landscapes and mutation rates. The
main types of questions that OncoSimulR can help address involve combinations of:

 Simulating asexual evolution (the oncoSimul* functions) where:

— Fitness is:
x A function of specific epistatic effects between genes
% A function of order effects
x A function of epistatic effects specified using DAGs/posets where
these DAGs/posets:
- Are user-specified
Generated randomly (simOGraph)
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*x Any mapping between genotypes and fitness where this mapping is:
User-specified
Generated randomly from families of random fitness landscapes
(rfitness)

« A function of the frequency of other genotypes (i.e., frequency-
dependent fitness), such as in adaptive dynamics (see section 10
for more details). This also allows you to model competition, cooper-
ation and mutualism, parasitism and predation, and commensalism
between clones.

— Mutation rates can:
x Vary between genes
x Be affected by other genes

« Examining times to evolutionarily or biomedically relevant events (fixation of
genotypes, reaching a minimal size, acquiring a minimal number of driver genes,
etc —specified with the stopping conditions to the oncoSimul* functions).

 Using different sampling schemes (samplePop) that are related to:

— Assessing genotypes from single-cell vs. whole tumor (or whole population)
with the typeSample argument

— Genotyping error (propError argument)

— Timing of samples (timeSample argument)

— ... and assessing the consequences of those on the observed genotypes
and their diversity (sampledGenotypes) and any other inferences that
depend on the observational process.

— (OncoSimulR returns the abundances of all genotypes at each of the
sampling points, so you are not restricted by what the samplePop function
provides.)

« Tracking the genealogical relationships of clones (plotClonePhylog) and as-
sessing evolutionary predictability (LOD, POM).

Some specific questions that you can address with the help of OncoSimulR are
discussed in section 1.3.

A quick overview of the main functions and their relationships is shown in Figure 1,
where we use italics for the type/class of R object and courier font for the name of
the functions.
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Figure 1: Relationships between the main functions
in OncoSimulR.
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1.3 Examples of questions that can be addressed with On-
coSimulR

Most of the examples in the rest of this vignette, starting with those in 1.7, focus
on the mechanics. Here, we will illustrate some problems in cancer genomics and
evolutionary genetics where OncoSimulR could be of help. This section does not
try to provide an answer to any of these questions (those would be full papers by
themselves). Instead, this section simply tries to illustrate some kinds of questions
where you can use OncoSimulR; of course, the possible uses of OncoSimulR are only
limited by your ingenuity. Here, I will only use short snippets of working code as we
are limited by time of execution; for real work you would want to use many more
scenarios and many more simulations, you would use appropriate statistical methods
to compare the output of runs, etc, ete, etc.

## Load the package
library(OncoSimulR)
## This is package OncoSimulR. If you are running it on an aarch64 (armé64) platfo.

1.3.1 Recovering restrictions in the order of accumulation of mutations

This is a question that was addressed, for instance, in Diaz-Uriarte (2015): do
methods that try to infer restrictions in the order of accumulation of mutations
(Gerstung et al., 2009; Ramazzotti et al., 2015; e.g., Szabo & Boucher, 2008) work
well under different evolutionary models and with different sampling schemes?

A possible way to examine that question would involve:

o generating random DAGs that encode restrictions;

» simulating cancer evolution using those DAGs;

» sampling the data and adding different levels of noise to the sampled data;
o running the inferential method;

o comparing the inferred DAG with the original, true, one.

## For reproducibility
set.seed(2)
RNGkind ("L'Ecuyer-CMRG")

## Simulate a DAG
gl <- simOGraph(4, out = "rT")

## Simulate 10 evolutionary trajectories

sl <- oncoSimulPop(10, allFitnessEffects(gl, drvNames = 1:4),
onlyCancer = TRUE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility of vignette

## Sample those data uniformly, and add noise

dl <- samplePop(sl, timeSample = "unif", propError = 0.1)
##
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## Subjects by Genes matrix of 10 subjects and 4 genes.

## You would now run the appropriate inferential method and
## compare observed and true. For example

## require(Oncotree)
## fitl <- oncotree.fit(d1)

## Now, you'd compare fitted and original. This is well beyond
## the scope of this document (and OncoSimulR itself).

1.3.2 Sign epistasis and probability of crossing fitness valleys

This question, and the question in the next section (1.3.3), encompass a wide range
of issues that have been addressed in evolutionary genetics studies and which include
from detailed analysis of simple models with a few uphill paths and valleys as in
Weissman et al. (2009) or Ochs & Desai (2015), to questions that refer to larger,
more complex fitness landscapes as in Szendro, Franke, et al. (2013) or Franke et al.
(2011) or Krug (2019) (see below).

Using as an example Ochs & Desai (2015) (we will see this example again in
section 5.3, where we cover different ways of specifying fitness), we could specify
the fitness landscape and run simulations until fixation (with argument fixation to
oncoSimulPop —see more details in section 6.3.3 and 6.3.4, again with this example).
We would then examine the proportion of genotypes fixed under different scenarios.
And we can extend this example by adding mutator genes:

## For reproducibility
set.seed(2)

RNGkind ("L'Ecuyer-CMRG")

## Specify fitness effects.

## Numeric values arbitrary, but set the intermediate genotype en
## route to ui as mildly deleterious so there is a valley.

## As in Ochs and Desai, the ui and uv genotypes
## can never appear.

u<-0.2; i <~ -0.02; vi <= 0.6; ui <- uv <- -Inf

od <- allFitnessEffects(

epistasis = c("u" = u, "u:i" = ui,
"yey" o= uv, nin = i,
"y:-i" = -Inf, "v:i" = vi))

## For the sake of extending this example, also turn i into a
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## mutator gene
odm <- allMutatorEffects(noIntGenes = c("i" = 50))

## How do mutation and fitness look like for each genotype?
evalAllGenotypesFitAndMut (od, odm, addwt = TRUE)

## Using old version of fitnessEffects. Transforming fitnessEffects
## to last version.

##  Genotype Birth MutatorFactor

## 1 WT 1.000 1
## 2 i 0.980 50
## 3 u 1.200 1
## 4 v 0.000 1
## 5 i, u 0.000 50
## 6 i, v 1.568 50
## 7 u, v 0.000 1
# 8 i, u, v 0.000 50

Ochs and Desai explicitly say “Each simulated population was evolved until either
the uphill genotype or valley-crossing genotype fixed.” So we will use fixation.

## Set a small initSize, as o.w. unlikely to pass the valley

initS <- 10

## The number of replicates is tiny, for the sake of speed

## of creation of the vignette. Even fewer in Windows, since we run on a single
## core

if (.Platform$0S.type == "windows") {
nruns <- 4
} else {

nruns <- 10

od_sim <- oncoSimulPop(nruns, od, muEF = odm,
fixation = c("u", "i, v"), initSize = initS,
model = "McFL",
mu = le-4, detectionDrivers = NA,
finalTime = NA,
detectionSize = NA, detectionProb = NA,
onlyCancer = TRUE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

## What is the frequency of each final genotype?

sampledGenotypes (samplePop(od_sim))

##

## Subjects by Genes matrix of 10 subjects and 3 genes.

##  Genotype Freq
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## 1 i, v 4

## 2 u 6

##

## Shannon's diversity (entropy) of sampled genotypes: 0.673012

1.3.3 Predictability of evolution in complex fitness landscapes

Focusing now on predictability in more general fitness landscapes, we would run
simulations under random fitness landscapes with varied ruggedness, and would then
examine the evolutionary predictability of the trajectories with measures such as
“Lines of Descent” and “Path of the Maximum” (Szendro, Franke, et al., 2013) and
the diversity of the sampled genotypes under different sampling regimes (see details
in section 16). (See also related comments in section 1.5).

## For reproducibility
set.seed(7)
RNGkind ("L'Ecuyer-CMRG")

## Repeat the following loop for different combinations of whatever
## interests you, such as number of genes, or distribution of the
## c and sd (which affect how rugged the landscape is), or

## reference genotype, or evolutionary model, or stopping criterion,
## or sampling procedure, or ...

## Generate a random fitness landscape, from the Rough Mount

## Fuji model, with g genes, and c ("slope" constant) and

## reference chosen randomly (reference is random by default and
## thus not specified below). Require a minimal number of

## accessible genotypes

g <~ 6
¢ <- runif(1, 1/5, 5)

rl <- rfitness(g, ¢ = c, min_accessible_genotypes = g)

## Plot it if you want; commented here as it takes long for a
## vignette

## plot(rl)

## Obtain landscape measures from MAGELLAN. Export to MAGELLAN and
## call your own copy of MAGELLAN's binary

## to_Magellan(rl, file = "rll.txt") ## (Commented out here to avoid writing file.

## or use the binary copy provided with OncoSimulR
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## see also below.

Magellan_stats(rl) ## (Commented out here to avoid writing files)

## ngeno npeaks nsinks gamma gamma. r.s
## 64.000 2.000 1.000 0.769 0.854 0.372
## nchains nsteps nori depth magn sign
## 1.000 5.000 4.000 2.000 0.863 0.129
## rsign f.1. X.2. f.3.. mode_f outD_m
## 0.008 0.916 0.010 0.074 1.000 0.346
## outD_v steps_m reach_m fitG_m opt_i mProbOpt_0O
## 1.587 3.052 13.5697 32.452 60.000 0.128
## opt_i.1 mProbOpt_1

## 63.000 0.872

## Simulate evolution in that landscape many times (here just 10)
simulrl <- oncoSimulPop(10, allFitnessEffects(genotFitness = rl),
keepPhylog = TRUE, keepEvery = 1,
onlyCancer = TRUE,
initSize = 4000,
seed = NULL, ## for reproducibility
mc.cores = 2) ## adapt to your hardware

## Obtain measures of evolutionary predictability
diversityLOD(LOD(simulrl))

## [1] 1.41848

diversityPOM(POM(simulrl))

## [1] 1.41848

sampledGenotypes (samplePop(simulrl, typeSample = "whole"))
##

## Subjects by Genes matrix of 10 subjects and 6 genes.
##  Genotype Freq

## A 1

##
##
##
##
##
## Shannon's diversity (entropy) of sampled genotypes: 1.41848

D,

OB WN R

1
1
4
3
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1.3.4 Mutator and antimutator genes

The effects of mutator and antimutator genes have been examined both in cancer
genetics (Nowak, 2006; Tomlinson et al., 1996) and in evolutionary genetics (Gerrish
et al., 2007), and are related to wider issues such as Muller’s ratchet and the evolution
of sex. There are, thus, a large range of questions related to mutator and antimutator
genes.
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One question addressed in Tomlinson et al. (1996) concerns under what circumstances
mutator genes are likely to play a role in cancer progression. For instance, Tomlinson
et al. (1996) find that an increased mutation rate is more likely to matter if the
number of required mutations in driver genes needed to reach cancer is large and if
the mutator effect is large.

We might want to ask, then, how long it takes before to reach cancer under different
scenarios. Time to reach cancer is stored in the component FinalTime of the output.
We would specify different numbers and effects of mutator genes (argument muEF).
We would also change the criteria for reaching cancer and in our case we can easily
do that by specifying different numbers in detectionDrivers. Of course, we would
also want to examine the effects of varying numbers of mutators, drivers, and possibly
fitness consequences of mutators. Below we assume mutators are neutral and we
assume there are no additional genes with deleterious mutations, but this need not
be so, of course (Gerrish et al., 2007; McFarland et al., 2014; see also Tomlinson et
al., 1996).

Let us run an example. For the sake of simplicity, we assume no epistatic interactions.

sd <- 0.1 ## fitness effect of drivers
sm <- O ## fitness effect of mutator
nd <- 20 ## number of drivers

nm <- 5 ## number of mutators

mut <- 10 ## mutator effect

fitnessGenesVector <- c(rep(sd, nd), rep(sm, nm))
names (fitnessGenesVector) <- 1:(nd + nm)
mutatorGenesVector <- rep(mut, nm)

names (mutatorGenesVector) <- (nd + 1):(nd + nm)

ft <- allFitnessEffects(noIntGenes = fitnessGenesVector,
drvNames = 1:nd)
mt <- allMutatorEffects(noIntGenes = mutatorGenesVector)

Now, simulate using the fitness and mutator specification. We fix the number of
drivers to cancer, and we stop when those numbers of drivers are reached. Since we
only care about the time it takes to reach cancer, not the actual trajectories, we set
keepEvery = NA:

## For reproducibility

set.seed(2)

RNGkind ("L'Ecuyer-CMRG")

ddr <- 4

st <- oncoSimulPop(4, ft, muEF = mt,
detectionDrivers = ddr,
finalTime = NA,
detectionSize = NA,
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detectionProb = NA,

onlyCancer = TRUE,

keepEvery = NA,

mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

## How long did it take to reach cancer?
unlist(lapply(st, function(x) x$FinalTime))
## [1] 370 141 1793 282

(Incidentally, notice that it is easy to get OncoSimulR to throw an exception if you
accidentally specify a huge mutation rate when all mutator genes are mutated: see
section 18.7.)

1.3.5 Epistatic interactions between drivers and passengers in cancer
and the consequences of order effects

1.3.5.1 Epistatic interactions between drivers and passengers Bauer et
al. (2014) have examined the effects of epistatic relationships between drivers and
passengers in cancer initiation. We could use their model as a starting point, and
examine how likely cancer is to develop under different variations of their model and
different evolutionary scenarios (e.g., initial sample size, mutation rates, evolutionary
model, etc).

There are several ways to specify their model, as we discuss in section 5.1. We will
use one based on DAGs here:

K <-4
sp <- le-b5
sdp <- 0.015

sdplus <- 0.05
sdminus <- 0.1

cnt <- (1 + sdplus)/(1 + sdminus)
prod_cnt <- cnt - 1
bauer <- data.frame(parent = c("Root", rep("D", K)),
child = c("D", pasteO("s", 1:K)),
s = c(prod_cnt, rep(sdp, K)),
sh = c(0, rep(sp, K)),
typeDep = "MN")
fbauer <- allFitnessEffects(bauer)
(bl <- evalAllGenotypes(fbauer, order = FALSE, addwt = TRUE))

## Genotype Birth
## 1 WT 1.000000
## 2 D 0.954545
## 3 s1 1.000010
## 4 s2 1.000010
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## 5 s3 1.000010
## 6 s4 1.000010
#H# 7 D, s1 0.968864
## 8 D, s2 0.968864
## 9 D, s3 0.968864
## 10 D, s4 0.968864
## 11 s1l, s2 1.000020
## 12 s1l, s3 1.000020
## 13 s1, s4 1.000020
## 14 s2, s3 1.000020
## 15 s2, s4 1.000020
## 16 s3, s4 1.000020
## 17 D, s1, s2 0.983397
## 18 D, s1, s3 0.983397
## 19 D, s1, s4 0.983397
## 20 D, s2, s3 0.983397
## 21 D, s2, s4 0.983397
## 22 D, s3, s4 0.983397
## 23 s1l, s2, s3 1.000030
## 24 s1l, s2, s4 1.000030
## 25 sl, s3, s4 1.000030
## 26 s2, s3, s4 1.000030
## 27 D, s1, s2, s3 0.998148
## 28 D, s1, s2, s4 0.998148
## 29 D, s1, s3, s4 0.998148
## 30 D, s2, s3, s4 0.998148
## 31 s1, s2, s3, s4 1.000040
## 32 D, s1, s2, s3, s4 1.013120

## How does the fitness landscape look like?

plot(bl, use_ggrepel = TRUE) ## avoid overlapping labels

## Warning: ggrepel: 12 unlabeled data points (too many overlaps).
## Consider increasing max.overlaps
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Now run simulations and examine how frequently the runs end up with population
sizes larger than a pre-specified threshold; for instance, below we look at increasing
population size 4x in the default maximum number of 2281 time periods (for real,
you would of course increase the number of total populations, the range of initial
population sizes, model, mutation rate, required population size or number of drivers,
ete):

## For reproducibility

set.seed(2)

RNGkind ("L'Ecuyer-CMRG")

totalpops <- 5

initSize <- 100

sbl <- oncoSimulPop(totalpops, fbauer, model = "Exp",
initSize = initSize,
onlyCancer = FALSE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

## What proportion of the simulations reach 4x initSize?
sum (summary (sb1) [, "TotalPopSize"] > (4 * initSize))/totalpops
## [1] 0.2

Alternatively, to examine how long it takes to reach cancer for a pre-specified size, you
could look at the value of FinalTime as we did above (section 1.3.4) after running
simulations with onlyCancer = TRUE and detectionSize set to some reasonable
value:
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totalpops <- 5
initSize <- 100
sb2 <- oncoSimulPop(totalpops, fbauer, model = "Exp",

##

initSize = initSize,

onlyCancer = TRUE,

detectionSize = 10 * initSize,

mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

How long did it take to reach cancer?

unlist(lapply(sb2, function(x) x$FinalTime))

##

[1] 416 354 339 445 215

1.3.5.2 Consequences of order effects for cancer initiation Instead of
focusing on different models for epistatic interactions, you might want to examine the
consequences of order effects (Ortmann et al., 2015). You would proceed as above,
but using models that differ by, say, the presence or absence of order effects. Details
on their specification are provided in section 3.6. Here is one particular model (you
would, of course, want to compare this to models without order effects or with other
magnitudes and types of order effects):

##
##
##
##
##
##

03

##
##

Order effects involving three genes.

Genotype "D, M" has different fitness effects
depending on whether M or D mutated first.
Ditto for gemotype "F, D, M".

Meaning of specification: X > Y means

that X is mutated before Y.

<- allFitnessEffects(orderEffects = c(

"F >D>M' = -0.3,
"D >F > M = 0.4,
"D >M > F" = 0.2,
"D > M = 0.1,
"M > D" = 0.5))

With the above specification, let's double check
the fitness of the possible genotypes

(oeag <- evalAllGenotypes(o3, addwt = TRUE, order = TRUE))

##
##
##
##

Genotype Birth
1 WT 1.00
2 D 1.00
3 F 1.00
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## 4 M 1.00
## 5 D>F 1.00
## 6 D>M 1.10
## 7 F>D 1.00
## 8 F>M 1.00
## 9 M>D 1.50
## 10 M>F 1.00
## 11 D > F > M 1.54
## 12 D > M >F 1.32
## 13 F >D>M 0.77
## 14 F > M >D 1.50
## 15 M >D >F 1.50
## 16 M > F > D 1.50

Now, run simulations and examine how frequently the runs do not end up in extinction.
As above, for real, you would of course increase the number of total populations, the
range of initial population sizes, mutation rate, etc:

## For reproducibility
set.seed(2)
RNGkind ("L'Ecuyer-CMRG")

totalpops <- 5
soel <- oncoSimulPop(totalpops, 03, model = "Exp",
initSize = 500,
onlyCancer = FALSE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

## What proportion of the simulations do not end up extinct?
sum(summary (soel) [, "TotalPopSize"] > 0)/totalpops
## [1] 0.4

As we just said, alternatively, to examine how long it takes to reach cancer you could
run simulations with onlyCancer = TRUE and look at the value of FinalTime as we
did above (section 1.3.4).

1.3.6 Simulating evolution with frequency-dependent fitness

The new frequency-dependent fitness funcionality allows users to run simulations in
a different way, defining fitness (birth rates) as functions of clone’s frequencies. We
can thus model frequency-dependent selection, as well as predation and parasitism,
cooperation and mutualism, and commensalism. See section 10 for further details
and examples.
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1.4 Trade-offs and what is OncoSimulR not well suited for

OncoSimulR is designed for complex fitness specifications and selection scenarios and
uses forward-time simulations; the types of questions where OncoSimulR can be of
help are discussed in sections 1.2 and 1.3 and running time and space consumption
of OncoSimulR are addressed in section 2. You should be aware that coalescent
simulations, sometimes also called backward-time simulations, are much more
efficient for simulating neutral data as well as some special selection scenarios
(Carvajal-Rodriguez, 2010; Hoban et al., 2011; Yuan et al., 2012).

In addition, since OncoSimulR, allows you to specify fitness with arbitrary epistatic
and order effects, as well as mutator effects, you need to learn the syntax of how to
specify those effects and you might be paying a performance penalty if your scenario
does not require this complexity. For instance, in the model of Beerenwinkel, Antal,
et al. (2007), the fitness of a genotype depends only on the total number of drivers
mutated, but not on which drivers are mutated (and, thus, not on the epistatic
interactions nor the order of accumulation of the drivers). This means that the
syntax for specifying that model could probably be a lot simpler (e.g., specify s per
driver).

But it also means that code written for just that case could probably run much faster.
First, because fitness evaluation is easier. Second, and possibly much more important,
because what we need to keep track of leads to much simpler and economic structures:
we do not need to keep track of clones (where two cells are regarded as different
clones if they differ anywhere in their genotype), but only of clone types or clone
classes as defined by the number of mutated drivers, and keeping track of clones can
be expensive —see sections 2 and 18.2.

So for those cases where you do not need the full flexibility of OncoSimulR, special
purpose software might be easier to use and faster to run. Of course, for some types
of problems this special purpose software might not be available, though.

1.5 Random fitness landscapes, clonal competition, pre-
dictability, and the strong selection weak mutation
(SSWM) regime

Many studies about evolutionary predictability (among other topics) focus on the
strong selection, weak mutation regime, SSWM (Gillespie, 1984; Orr, 2002) (see
overview in Krug (2019)). In this regime, mutations are rare (much smaller than the
mutation rate times the population size) and selection is strong (much larger than
1/population size), so that the population consists of a single clone most of the time,
and evolution proceeds by complete, successive clonal expansions of advantageous
mutations.

We can easily simulate variations around these scenarios with OncoSimulR, moving
away from the SSWM by increasing the population size, or changing the size of the
fitness differences.

The examples below, not run for the sake of speed, play with population size and
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fitness differences. To make sure we use a similar fitness landscape, we use the
same simulated fitness landscape, scaled differently, so that the differences in fitness
between mutants are increased or decreased while keeping their ranking identical
(and, thus, having the same set of accessible and inaccessible genotypes and paths
over the landscape).

If you run the code, you will see that as we increase population size we move further
away from the SSWM: the population is no longer composed of a single clone most
of the time.

Before running the examples, and to show the effects quantitatively, we define a
simple wrapper to compute a few statistics.

## oncoSimul object -> measures of clonal interference
## they are not averaged over time. Une value for sampled time
clonal interf per_time <- function(x) {
x <- x$pops.by.time
y <= x[, -1, drop = FALSE]
shannon <- apply(y, 1, OncoSimulR:::shannonI)
tot <- rowSums(y)
half tot <- tot * 0.5
five_p_tot <- tot * 0.05
freq most_freq <- apply(y/tot, 1, max)
single more_half <- rowSums(y > half_tot)
## whether more than 1 clone with more than 5J, pop.
how_many_gt_5p <- rowSums(y > five_p_tot)
several gt 5p <- (how_many_gt 5p > 1)
return(cbind(shannon, ## Diversity of clones
freq most_freq, ## Frequency of the most freq. clone
single more_half, ## Any clone with a frequency > 5077
several gt bp, ## Are there more than 1 clones with
## frequency > 5,7
how_many_gt_5p ## How many clones are there with
## frequency > 5
))
+

set.seed(1)
r7b <- rfitness(7, scale = c(1.2, 0, 1))

## Large pop sizes: clonal interference
(sr7b <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b),
model = "McFL",
mu = le-6,
onlyCancer = FALSE,
finalTime = 400,
initSize = 1le7,
keepEvery = 4,
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detectionSize = 1e10))
plot(sr7b, show = "genotypes")

colMeans(clonal_interf_per_time(sr7b))

## Small pop sizes: a single clone most of the time
(sr7c <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b),
model = "McFL",
mu = le-6,
onlyCancer = FALSE,
finalTime = 60000,
initSize = 1e3,
keepEvery = 4,
detectionSize = 1e10))

plot(sr7c, show = "genotypes")

colMeans(clonal_interf_per_time(sr7c))

## Even smaller fitness differences, but large pop. sizes
set.seed(1); r7b2 <- rfitness(7, scale = c(1.05, 0, 1))

(sr7b2 <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b2),
model = "McFL",
mu = le-6,
onlyCancer = FALSE,
finalTime = 3500,
initSize = 1le7,
keepEvery = 4,
detectionSize = 1e10))
sr7b2
plot(sr7b2, show = "genotypes")
colMeans(clonal_interf_per_time(sr7b2))

## Increase pop size further
(sr7b3 <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b2),
model = "McFL",
mu = le-6,
onlyCancer = FALSE,
finalTime = 1500,
initSize = 1e8,
keepEvery = 4,
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detectionSize = 1e10))
sr7b3
plot(sr7b3, show = "genotypes")
colMeans(clonal_interf_per_time(sr7b3))
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1.6 Steps for using OncoSimulR
Using this package will often involve the following steps:
1. Specify fitness effects: sections 3 and 5.

2. Simulate cancer progression: section 6. You can simulate for a single individual
or subject or for a set of subjects. You will need to:

e Decide on a model. This basically amounts to choosing a model with
exponential growth (“Exp” or “Bozic”) or a model with carrying capacity
(“McFL”). If exponential growth, you can choose whether the the effects of
mutations operate on the death rate (“Bozic”) or the birth rate (“Exp”)!.

o Specify other parameters of the simulation. In particular, decide when to
stop the simulation, mutation rates, etc.

Of course, at least for initial playing around, you can use the defaults.

3. Sample from the simulated data and do something with those simulated data
(e.g., fit an OT model to them, examine diversity or time until cancer, etc).
Most of what you do with the data, however, is outside the scope of this
package and this vignette.

Before anything else, let us load the package in case it was not yet loaded. We also
explicitly load graph and igraph for the vignette to work (you do not need that for
your usual interactive work). And I set the default color for vertices in igraph.

library(OncoSimulR)

library(graph)

library(igraph)
igraph_options(vertex.color = "SkyBlue2")

To be explicit, what version are we running?

packageVersion("OncoSimulR")
## [1] '4.11.1'

1.7 Two quick examples of fitness specifications

Following 1.6 we will run two very minimal examples. First a model with a few genes
and epistasis:

## 1. Fitness effects: here we specify an

## epistatic model with modules.
sa <- 0.1

sb <- -0.2

sab <- 0.25

Tt is of course possible to do this with the carrying capacity (or gompertz-like) models, but
there probably is little reason to do it. McFarland et al. (2013) discuss this has little effect on
their results, for example. In addition, decreasing the death rate will more easily lead to numerical
problems as shown in section 3.11.2.
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sac <- -0.1

sbc <- 0.25

sv2 <- allFitnessEffects(epistasis = c("-A : B" = sb,
"A : -B" = sa,
"A : C" = sac,
"A:B" = sab,
"-A:B:C" = sbc),

geneToModule = c(

"A" = "al, a2",
"B" = "b",
e = UG,
drvNames = c("al", "a2", "b", "c"))

evalAllGenotypes(sv2, addwt = TRUE)

## Genotype Birth

## 1 WT 1.000

## 2 al 1.100

## 3 a2 1.100

## 4 b 0.800

## 5 c 1.000

## 6 al, a2 1.100

##H 7 al, b 1.250

## 8 al, c 0.990

## 9 a2, b 1.250

## 10 a2, c 0.990

## 11 b, ¢ 1.000

## 12 al, a2, b 1.250

## 13 al, a2, c 0.990

## 14 al, b, ¢ 1.125

## 15 a2, b, ¢ 1.125

## 16 al, a2, b, c 1.125

## 2. Simulate the data. Here we use the "McFL" model and set
## explicitly parameters for mutation rate, initial size, size
## of the population that will end the simulations, etc

RNGkind ("Mersenne-Twister")
set.seed(983)

epl <- oncoSimulIndiv(sv2, model = "McFL",
mu = 5e-6,
sampleEvery = 0.025,
keepEvery = 0.5,

initSize = 2000,
finalTime = 3000,
onlyCancer = FALSE)
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## 3. We will not analyze those data any further. We will only plot
## them. For the sake of a small plot, we thin the data.
plot(epl, show = "drivers", xlim = c(0, 1500),

thinData = TRUE, thinData.keep = 0.5)
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Figure 2: Plot of drivers of an epistasis simulation.

As a second example, we will use a model where we specify restrictions in the
order of accumulation of mutations using a DAG with the pancreatic cancer
poset in Gerstung, Eriksson, et al. (2011) (see more details in section 5.5):

## 1. Fitness effects:
pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),
"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),
child = c("KRAS","SMAD4", "CDNK2A",

"TP53", "MLL3",

rep("PXDN", 3), rep("TGFBR2", 2)),
s =0.1,
sh = -0.9,

typeDep = "MN"),
drvNames = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3", "TGFBR2", "PXDN"))

## Plot the DAG of the fitnessEffects object
plot (pancr)
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O80

Figure 3: Plot of DAG corresponding to fitnessEf-
fects object.

## 2. Simulate from it. We change several possible options.

set.seed(1) ## Fix the seed, so we can repeat it
## We set a small finalTime to speed up the vignette

ep2 <- oncoSimulIndiv(pancr, model = "McFL",
mu = le-6,
sampleEvery = 0.02,
keepEvery = 1,
initSize = 1000,
finalTime = 20000,

detectionDrivers = 3,
onlyCancer = FALSE)

## 3. What genotypes and drivers we get? And play with limits
## to show only parts of the data. We also aggressively thin
## the data.

par(cex = 0.7)
plot(ep2, show = "genotypes", xlim = c(500, 1800),

ylim = c(0, 2400),
thinData = TRUE, thinData.keep = 0.3)
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Figure 4: Plot of genotypes of a simulation from a

DAG.

The rest of this vignette explores all of those functions and arguments in much more
detail.

1.8 Citing OncoSimulR and other documentation

In R, you can do

citation("OncoSimulR")

## If you use OncoSimulR, please cite the OncoSimulR

## Bioinformatics paper. OUOncoSimulR has been used in three
## large comparative studies of methods to infer restrictions
## in the order of accumulation of mutations (cancer

## progression models) published in PLoS Computational Biology,
## Bioinformatics and BMC Bioinformatics; you might want to
## cite those too, if appropriate, such as when referring to
## using evolutionary simulations to assess oncogenetic

## tree/cancer progression methods performance.

##

## R Diaz-Uriarte. OncoSimulR: genetic simulation with

##  arbitrary epistasis and mutator gemes in asexual

##  populations. 2017. Bioinformatics, 33, 1898--1899.

##  https://doi.org/10.1093/bioinformatics/btx077.
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##

## R Diaz-Uriarte and C. Vasallo. Every which way? On

##  predicting tumor evolution using cancer progression models

## 2019 PLoS Computational Biology

##  https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.10072
##

## R Diaz-Uriarte. Cancer progression models and fitness

##  landscapes: a many-to-many relationship 2017

## Bioinformatics.

##  https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinfor:
##

## R Diaz-Uriarte. Identifying restrictions in the order of

##  accumulation of mutations during tumor progression:

##  effects of passengers, evolutionary models, and sampling

##  2015. BMC Bioinformatics, 16(41).

##

## To see these entries in BibTeX format, use

## 'print(<citation>, bibtex=TRUE)', 'toBibtex(.)', or set

## 'options(citation.bibtex.max=999)"'.

which will tell you how to cite the package. Please, do cite the Bionformatics paper
if you use the package in publications.

This is the URL for the Bioinformatics paper: https://doi.org/10.1093/bioinformati
cs/btx077 (there is also an early preprint at bioRxiv, but it should now point to the
Bioinformatics paper).

1.8.1 HTML and PDF versions of the vignette

A PDF version of this vignette is available from https://rdiaz02.github.io/OncoSimu
1/pdfs/OncoSimulR.pdf. And an HTML version from https://rdiaz02.github.io/
OncoSimul/OncoSimulR.html. These files should correspond to the most recent,
GitHub version, of the package (i.e., they might include changes not yet available
from the BioConductor package). Beware that the PDF might have figures and R
code that do not fit on the page, etc.

1.9 Testing, code coverage, and other examples

OncoSimulR includes more than 2000 tests that are run at every check cycle. These
tests provide a code coverage of more than 90% including both the C++ and R code.
Another set of over 500 long-running (several hours) tests can be run on demand
(see directory ‘/tests/manual’). In addition to serving as test cases, some of that
code also provides further examples of usage.
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1.10 Versions

In this vignette and the documentation I often refer to version 1 (v.1) and version 2
of OncoSimulR. Version 1 is the version available up to, and including, BioConductor
v. 3.1. Version 2 of OncoSimulR is available starting from BioConductor 3.2 (and,
of course, available too from development versions of BioC). So, if you are using the
current stable or development version of BioConductor, or you grab the sources from
GitHub (https://github.com/rdiaz02/OncoSimul) you are using what we call version
2. The functionality of version 1 has been removed.

Version 3 (for BioConductor 3.13) made frequency dependent fitness available in the
stable version.

Version 4 (BioConductor 3.16) introduces interventions and the possibility to specify,
separately, birth and death (including frequency dependence).
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2 Running time and space consumption of On-
coSimulR

Time to complete the simulations and size of returned objects (space consumption)
depend on several, interacting factors. The usual rule of “experiment before launching
a large number of simulations” applies, but here we will walk through several cases to
get a feeling for the major factors that affect speed and size. Many of the comments
on this section need to use ideas discussed in other places of this document; if you
read this section first, you might want to come back after reading the relevant parts.

Speed will depend on:

e Your hardware, of course.

e The evolutionary model.

o The granularity of how often you keep data (keepEvery argument). Note that
the default, which is to keep as often as you sample (so that we preserve all
history) can lead to slow execution times.

o The mutation rate, because higher mutation rates lead to more clones, and
more clones means we need to iterate over, well, more clones, and keep larger
data structures.

o The fitness specification: more complex fitness specifications tend to be slightly
slower but specially different fitness specifications can have radically different
effects on the evolutionary trajectories, accessibility of fast growing genotypes
and, generally, the evolutionary dynamics.

o The stopping conditions (detectionProb, detectionDrivers, detectionSize
arguments) and whether or not simulations are run until cancer is reached
(onlyCancer argument).

o Most of the above factors can interact in complex ways.

Size of returned objects will depend on:

o Any factor that affects the number of clones tracked /returned, in particular:
initial sizes and stopping conditions, mutation rate, and how often you keep
data (the keepEvery argument can make a huge difference here).

o Whether or not you keep the complete genealogy of clones (this affects slightly
the size of returned object, not speed).

In the sections that follow, we go over several cases to understand some of the main
settings that affect running time (or execution time) and space consumption (the size
of returned objects). It should be understood, however, that many of the examples
shown below do not represent typical use cases of OncoSimulR and are used only to
identify what and how affects running time and space consumption. As we will see
in most examples in this vignette, typical use cases of OncoSimulR involve hundreds
to thousands of genes on population sizes up to 10 to 107.

Note that most of the code in this section is not executed during the building of the
vignette to keep vignette build time reasonable and prevent using huge amounts of
RAM. All of the code, ready to be sourced and run, is available from the ‘inst/miscell’
directory (and the summary output from some of the benchmarks is available from
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the ‘miscell-files/vignette bench Rout’ directory of the main OncoSimul repository
at https://github.com/rdiaz02/OncoSimul).

2.1 Exp and McFL with “detectionProb” and pancreas ex-
ample

To get familiar with some of they factors that affect time and size, we will use the
fitness specification from section 1.7, with the detectionProb stopping mechanism
(see 6.3.2). We will use the two main growth models (exponential and McFarland).
Each model will be run with two settings of keepEvery. With keepEvery = 1 (runs
expl and mc1), population samples are stored at time intervals of 1 (even if most
of the clones in those samples later become extinct). With keepEvery = NA (runs
exp2 and mc2) no intermediate population samples are stored, so clones that become
extinct at any sampling period are pruned and only the existing clones at the end of
the simulation are returned (see details in 18.2.1).

Will run 100 simulations. The results I show are for a laptop with an 8-core Intel Xeon
E3-1505M CPU, running Debian GNU/Linux (the results from these benchmarks
are available as data(benchmark_1)).

## Specify fitness
pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),
"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),
child = c("KRAS","SMAD4", "CDNK2A",

"TP53", "MLL3",

rep("PXDN", 3), rep("TGFBR2", 2)),
s =0.1,
sh = -0.9,

typeDep = "MN"),
drvNames = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3", "TGFBR2", "PXDN"))

Nindiv <- 100 ## Number of simulations run.
## Increase this number to decrease sampling variation

## keepEvery = 1
t_expl <- system.time(
expl <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = 1,
model = "Exp",
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mc.cores = 1)) ["elapsed"]/Nindiv

t_mcl <- system.time(
mcl <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = 1,
model = "McFL",
mc.cores = 1)) ["elapsed"]/Nindiv

## keepEvery = NA
t_exp2 <- system.time(
exp2 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = NA,
model = "Exp",
mc.cores = 1)) ["elapsed"]/Nindiv

t_mc2 <- system.time(
mc2 <- oncoSimulPop(Nindiv, pancr,

onlyCancer = TRUE,

detectionProb = "default",

detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = NA,
model = "McFL",
mc.cores = 1)) ["elapsed"]/Nindiv

We can obtain times, sizes of objects, and summaries of numbers of clones, iterations,
and final times doing, for instance:

cat("\n\n\n t_expl = ", t_expl, "\n")
object.size(expl)/(Nindiv * 1024°2)
cat("\n\n")

summary (unlist (lapply(expl, "[[", "NumClones")))
summary (unlist (lapply(expl, "[[", "NumIter")))
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summary (unlist (lapply(expl, "[[", "FinalTime")))
summary (unlist (lapply(expl, "[[", "TotalPopSize")))

The above runs yield the following:
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Table 2: Benchmarks of Exp and McFL models using the default detectionProb with two settings of keepEvery.

Number of Number of Final Total
Elapsed Time, average Object Size, average Clones, Iterations, Time, Total Population Population Size,
per simulation (s) per simulation (MB) median median median Size, median max. keepEvery
expl 0 0.04 2 254 252 1,058 11,046 1
mcl 0.74 3.9 12 816,331 20,406 696 979 1
exp2 0 0.01 1 296 294 1,021 21,884 NA
mc2 0.7 0.01 1 694,716 17,366 692 888 NA



The above table shows that a naive comparison (looking simply at execution time)
might conclude that the McFL model is much, much slower than the Exp model.
But that is not the complete story: using the detectionProb stopping mechanism
(see 6.3.2) will lead to stopping the simulations very quickly in the exponential model
because as soon as a clone with fitness > 1 appears it starts growing exponentially.
In fact, we can see that the number of iterations and the final time are much smaller
in the Exp than in the McFL model. We will elaborate on this point below (section
2.2.1), when we discuss the setting for checkSizePEvery (here left at its default
value of 20): checking the exiting condition more often (smaller checkSizePEvery)
would probably be justified here (notice also the very large final times) and would
lead to a sharp decrease in number of iterations and, thus, running time.

This table also shows that the keepEvery = NA setting, which was in effect in
simulations exp2 and mc2, can make a difference especially for the McFL models, as
seen by the median number of clones and the size of the returned object. Models
exp2 and mc2 do not store any intermediate population samples so clones that
become extinct at any sampling period are pruned and only the existing clones at
the end of the simulation are returned. In contrast, models expl and mcl store
population samples at time intervals of 1 (keepEvery = 1), even if many of those
clones eventually become extinct. We will return to this issue below as execution
time and object size depend strongly on the number of clones tracked.

We can run the exponential model again modifying the arguments of the
detectionProb mechanism; in two of the models below (exp3 and exp4) no
detection can take place unless populations are at least 100 times larger than the
initial population size, and probability of detection is 0.1 with a population size
1,000 times larger than the initial one (PDBaseline = 5e4, n2 = 5e5). In the other
two models (exp5 and exp6), no detection can take place unless populations are at
least 1,000 times larger than the initial population size, and probability of detection
is 0.1 with a population size 100,000 times larger than the initial one (PDBaseline
= beb, n2 = 5e7)2. In runs exp3 and exp5 we set keepEvery = 1 and in runs exp4
and exp6 we set keepEvery = NA.

t_exp3 <- system.time(
exp3 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e4,
p2 = 0.1, n2 = beb,
checkSizePEvery = 20),
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = 1,
model = "Exp",
mc.cores = 1)) ["elapsed"]/Nindiv

2Again, these are not necessarily reasonable or common settings. We are using them to understand
what and how affects running time and space consumption.
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t_expd4 <- system.time(
exp4 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e4,
p2 = 0.1, n2 = beb,
checkSizePEvery = 20),
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = NA,
model = "Exp",
mc.cores = 1)) ["elapsed"]/Nindiv

t_expb <- system.time(
exp5 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = c(PDBaseline =
p2 = 0.1, n2
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = 1,
model = "Exp",
mc.cores = 1)) ["elapsed"]/Nindiv

5eb,
= be7),

t_expb <- system.time(
exp6 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e5,
p2 = 0.1, n2 = 5e7),
detectionSize = NA,
detectionDrivers = NA,
finalTime = NA,
keepEvery = NA,
model = "Exp",
mc.cores = 1)) ["elapsed"]/Nindiv
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Table 3: Benchmarks of Exp and McFL models modifying the default detectionProb with two settings of

keepEvery.
Elapsed Time, Number of Number of Final Total Total
average per Object Size, average Clones, Iterations, Time, Population Population
simulation (s) per simulation (MB) median median median Size, median Size, max. keepEvellyDBaselina2
exp3 0.01 0.41 14 2,754 1,890 6,798,358 2.7e408 1 50,000 5e+405
exp4 0.01 0.02 8 2,730 2,090 7,443,812 1.7e+08 NA 50,000 5e+05
expb 0.84 0.91 34 54,332 2,026 1.4e+09 4.2e+10 1 b5e+05 bHe+07

exp6 0.54 0.02 27 44,288 2,026 1.2e+09 3.3e+10 NA 5e+05 5e407



As above, keepEvery = NA (in exp4 and exp6) leads to much smaller object sizes
and slightly smaller numbers of clones and execution times. Changing the exiting
conditions (by changing detectionProb arguments) leads to large increases in
number of iterations (in this case by factors of about 15x to 25x) and a corresponding
increase in execution time as well as much larger population sizes (in some cases
> 10%).

In some of the runs of exp5 and exp6 we get the (recoverable) exception message
from the C++ code: Recoverable exception ti set to DBL_MIN. Rerunning,
which is related to those simulations reaching total population sizes > 10'%; we return
to this below (section 2.4). You might also wonder why total and median population
sizes are so large in these two runs, given the exiting conditions. One of the reasons
is that we are using the default checkSizePEvery = 20, so the interval between
successive checks of the exiting condition is large; this is discussed at greater length
in section 2.2.1.

All the runs above used the default value onlyCancer = TRUE. This means that
simulations will be repeated until the exiting conditions are reached (see details in
section 6.3) and, therefore, any simulation that ends up in extinction will be repeated.
This setting can thus have a large effect on the exponential models, because when
the initial population size is not very large and we start from the wildtype, it is not
uncommon for simulations to become extinct (when birth and death rates are equal
and the population size is small, it is easy to reach extinction before a mutation in
a gene that increases fitness occurs). But this is rarely the case in the McFarland
model (unless we use really tiny initial population sizes) because of the dependency
of death rate on total population size (see section 3.2.1).

The number of attempts until cancer was reached in the above models is shown in
Table 4 (the values can be obtained from any of the above runs doing, for instance,
median(unlist(lapply(expl, function(x) x$other$attemptsUsed))) ):

Table 4: Number of attempts until cancer.

Attempts until Attempts until Attempts until

Cancer, median Cancer, mean Cancer, max. PDBaseline n2
expl 1 1.9 7 600 1,000
mcl 1 1 1 600 1,000
exp2 2 2.2 16 600 1,000
mc2 1 1 1 600 1,000
exp3 6 7.7 40 50,000 5e+405
exp4 6 8 39 50,000 5e+05
expb 5 8.3 41 5e4+05 He+07
expb6 5 7.2 30  5e+05 5e+07

The McFL models finish in a single attempt. The exponential model simulations
where we can exit with small population sizes (exp1, exp2) need many fewer attempts
to reach cancer than those where large population sizes are required (exp3 to exp6).
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There is no relevant different among those last four, which is what we would expect:
a population that has already reached a size of 50,000 cells from an initial population
size of 500 is obviously a growing population where there is at least one mutant with
positive fitness; thus, it unlikely to go extinct and therefore having to grow up to at
least 500,000 will not significantly increase the risk of extinction.

We will now rerun all of the above models with argument onlyCancer = FALSE. The
results are shown in Table 5 (note that the differences between this table and Table
2 for the McFL models are due only to sampling variation).
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Table 5: Benchmarks of models in Table 2 and 3 when run with onlyCancer = FALSE.

Elapsed Time, Object Size, Number of Total Total Total

average per average per Number of Iterations, Final Time, Population Population Population
simulation (s)  simulation (MB)  Clones, median median median Size, median Size, mean Size, max.  keepEvery = PDBaseline n2
expl_noc 0.001 0.041 1.5 394 393 0 708 18,188 1 600 1,000
mcl_ noc 0.69 3.9 12 673,910 16,846 692 700 983 1 600 1,000
exp2_ noc 0.001 0.012 1 320 319 726 870 26,023 NA 600 1,000
mc2_ noc 0.65 0.014 1 628,683 15,716 694 704 910 NA 600 1,000
exp3_ noc 0.002 0.15 2 718 694 0 2,229,519 5.7e+07 1 50,000  5e+05
exp4_noc 0.002 0.013 0 600 599 0 3,122,765 1.3e4-08 NA 50,000  5e+405
exp5_ noc 0.17 0.22 3 848 T 0 5.9e4-08 1.5e+10 1 5e+05  5e+07
exp6__noc 0.068 0.013 0 784 716 0 4.1e4-08 1.3e+10 NA 5e+05  5e+07



Now most simulations under the exponential model end up in extinction, as seen
by the median population size of 0 (but not all, as the mean and max. population
size are clearly away from zero). Consequently, simulations under the exponential
model are now faster (and the size of the average returned object is smaller). Of
course, whether one should run simulations with onlyCancer = TRUE or onlyCancer
= FALSE will depend on the question being asked (see, for example, section 1.3.5 for
a question where we will naturally want to use onlyCancer = FALSE).

To make it easier to compare results with those of the next section, Table 6 shows
all the runs so far.
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Table 6: Benchmarks of all models in Tables 2, 3, and 5.

Elapsed
Time, Object Size,
average per average per Number of Number of Total Total Total
simulation simulation Clones, Iterations, Final Time, Population Population Population

(s) (MB) median median median Size, median Size, mean Size, max. keepEvery PDBaseline n2 onlyCance
expl 0.001 0.037 2 254 252 1,058 1,277 11,046 1 600 1,000 TRUE
mcl 0.74 3.9 12 816,331 20,406 696 702 979 1 600 1,000 TRUE
exp2 0.001 0.012 1 296 294 1,021 1,392 21,884 NA 600 1,000 TRUE
mc2 0.7 0.014 1 694,716 17,366 692 698 888 NA 600 1,000 TRUE
exp3 0.01 0.41 14 2,754 1,890 6,798,358 1.7e+07 2.7e+08 1 50,000  5e+05 TRUE
exp4 0.009 0.016 8 2,730 2,090 7,443,812 1.5e+07 1.7e408 NA 50,000  5e+05 TRUE
expb 0.84 0.91 34 54,332 2,026 1.4e+09 3.5e+09 4.2e+10 1 5e+05  5e+07 TRUE
exp6 0.54 0.021 27 44,288 2,026 1.2e+09 3.2e4+09 3.3e+10 NA 5e+05  5e407 TRUE
expl_noc 0.001 0.041 1.5 394 393 0 708 18,188 1 600 1,000 FALSE
mcl__noc 0.69 3.9 12 673,910 16,846 692 700 983 1 600 1,000 FALSE
exp2_ noc 0.001 0.012 1 320 319 726 870 26,023 NA 600 1,000 FALSE
mc2_ noc 0.65 0.014 1 628,683 15,716 694 704 910 NA 600 1,000 FALSE
exp3__noc 0.002 0.15 2 718 694 0 2,229,519 5.7e4+07 1 50,000 5e+05 FALSE
exp4_ noc 0.002 0.013 0 600 599 0 3,122,765 1.3e+08 NA 50,000 5e+05 FALSE
exp5__noc 0.17 0.22 3 848 T 0 5.9e+08 1.5e+10 1 5e+05 bHe407 FALSE
exp6__noc 0.068 0.013 0 784 716 0 4.1e+08 1.3e+10 NA 5e+05 bHe407 FALSE



2.1.1 Changing fitness: s =0.1 and s = 0.05

In the above fitness specification the fitness effect of each gene (when its restrictions
are satisfied) is s = 0.1 (see section 3.2 for details). Here we rerun all the above
benchmarks using s = 0.05 (the results from these benchmarks are available as
data(benchmark_1_0.05)) and results are shown below in Table 7.
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Table 7: Benchmarks of all models in Table 6 using s = 0.05 (instead of s = 0.1).

Elapsed
Time, Object Size,
average per average per Number of Number of Total Total Total
simulation simulation Clones, Iterations, Final Time, Population Population Population

(s) (MB) median median median Size, median Size, mean Size, max. keepEvery PDBaseline n2 onlyCance
expl 0.002 0.043 2 316 315 1,104 1,181 3,176 1 600 1,000 TRUE
mcl 1.7 11 17 2e+-06 50,696 644 647 761 1 600 1,000 TRUE
exp2 0.001 0.012 1 274 273 1,129 1,281 7,608 NA 600 1,000 TRUE
mc2 1.6 0.016 1 1,615,197 40,376 644 651 772 NA 600 1,000 TRUE
exp3 0.012 0.63 15 3,995 2,919 3,798,540 5,892,376 4.5e+07 1 50,000  5e+05 TRUE
exp4 0.011 0.017 9 4,288 3,276 4,528,072 6,551,319 3.2e4+07 NA 50,000  5e+05 TRUE
expb 0.3 1.2 34 68,410 2,751 6.8e+08 le+09 8.2e+09 1 5e+05  5e+07 TRUE
exp6 0.26 0.022 23 44,876 2,499 4.3e4-08 8.9e+-08 7.3e+09 NA 5e+05  5e407 TRUE
expl_noc 0.001 0.039 2 310 308 0 522 2,239 1 600 1,000 FALSE
mcl_ noc 1.6 11 17 2e+-06 50,776 638 643 757 1 600 1,000 FALSE
exp2_ noc 0.001 0.012 0 340 336 0 599 3,994 NA 600 1,000 FALSE
mc2_ noc 1.7 0.017 1 2,102,439 52,556 645 650 740 NA 600 1,000 FALSE
exp3__noc 0.002 0.11 2 618 615 0 150,978 6,093,498 1 50,000 5e+05 FALSE
exp4_ noc 0.002 0.013 0 813 812 0 558,225 2.3e4+07 NA 50,000 5e+05 FALSE
exp5__noc 0.031 0.23 3 917 914 0 1.1e4-08 3.7e4+09 1 5e+05 bHe407 FALSE
exp6__noc 0.046 0.013 0 628 610 0 1.7e408 5.1e+09 NA 5e+05 bHe407 FALSE



As expected, having a smaller s leads to slower processes in most cases, since it takes
longer to reach the exiting conditions sooner. Particularly noticeable are the runs for
the McFL models (notice the increases in population size and number of iterations
—see also below).

That is not the case, however, for exp5 and exp6 (and exp5_noc and exp6_noc).
When running with s = 0.05 the simulations exit at a later time (see column “Final
Time”) but they exit with smaller population sizes. Here we have an interaction
between sampling frequency, speed of growth of the population, mutation events and
number of clones. In populations that grow much faster mutation events will happen
more often (which will trigger further iterations of the algorithm); in addition, more
new clones will be created, even if they only exist for short times and become extinct
by the following sampling period (so they are not reflected in the pops.by.time
matrix). These differences are proportionally larger the larger the rate of growth of
the population. Thus, they are larger between, say, the exp5 at s = 0.1 and s = 0.05
than between the exp4 at the two different s: the exp5 exit conditions can only be
satisfied at much larger population sizes so at populations sizes when growth is much
faster (recall we are dealing with exponential growth).

Recall also that with the default settings in detectionProb, we assess the exiting
condition every 20 time periods (argument checkSizePEvery); this means that for
fast growing populations, the increase in population size between successive checks of
the exit conditions will be much larger (this phenomenon is also discussed in section
2.2.1).

Thus, what is happening in the exp5 and exp6 with s = 0.1 is that close to the
time the exit conditions could be satisfied, they are growing very fast, accumulating
mutants, and incurring in additional iterations. They exit sooner in terms of time
periods, but they do much more work before arriving there.

The setting of checkSizePEvery is also having a huge effect on the McFL model
simulations (the number of iterations is > 10%). Even more than in the previous
section, checking the exiting condition more often (smaller checkSizePEvery) would
probably be justified here (notice also the very large final times) and would lead to a
sharp decrease in number of iterations and, thus, running time.

The moral here is that in complex simulations like this (and most simulations
are complex), the effects of some parameters (s in this case) might look counter-
intuitive at first. Thus the need to “experiment before launching a large number of
simulations”.

2.2 Several “common use cases’” runs

Let us now execute some simulations under more usual conditions. We will use seven
different fitness specifications: the pancreas example, two random fitness landscapes,
and four sets of independent genes (200 to 4000 genes) with fitness effects randomly
drawn from exponential distributions:
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pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),
"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),
child = c("KRAS","SMAD4", "CDNK2A",

"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),
s =0.1,
sh = -0.9,

typeDep = "MN"),
drvNames = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3", "TGFBR2", "PXDN"))

## Random fitness landscape with 6 genes

## At least 50 accessible genotypes

rfl6 <- rfitness(6, min_accessible_genotypes = 50)
attributes(rfl6)$accessible_genotypes ## How many accessible
rf6 <- allFitnessEffects(genotFitness = rfl6)

## Random fitness landscape with 12 genes

## At least 200 accessible genotypes

rfl12 <- rfitness(12, min_accessible_genotypes = 200)
attributes(rfll2)$accessible_genotypes ## How many accessible
rf12 <- allFitnessEffects(genotFitness = rfl12)

## Independent genes; positive fitness from exponential distribution
## with mean around 0.1, and negative from exponential with mean

## around -0.02. Half of genes positive fitness effects, half

## negative.

ng <- 200 re_200 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),
-rexp(ng/2, 50)))

ng <- 500
re_500 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),
-rexp(ng/2, 50)))

ng <- 2000

re_2000 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),
-rexp(ng/2, 50)))
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ng <- 4000

re_4000 <- allFitnessEffects(noIntGenes

2.2.1 Common use cases, set 1.

We will use the Exp and the McFL models, run with different parameters. The script
is provided as ‘benchmark_2.R’; under ‘/inst/miscell’, with output in the ‘miscell-
files/vignette bench Rout’ directory of the main OncoSimul repository at https:
//github.com/rdiaz02/OncoSimul. The data are available as data(benchmark_2).

For the Exp model the call will be

oncoSimulPop(Nindiv,
fitness,
detectionProb = NA,

detectionSize

1e6,

initSize = 500,
detectionDrivers = NA,
keepPhylog = TRUE,

model = "Exp",
errorHitWallTime = FALSE,
errorHitMaxTries = FALSE,

finalTime = 5000,
onlyCancer = FALSE,
mc.cores = 1,
sampleEvery = 0.5,
keepEvery = 1)

And for McFL:

initSize <- 1000
oncoSimulPop(Nindiv,

fitness,

detectionProb = c(

PDBaseline = 1.4 * initSize,

n2 = 2 * initSize,

p2 = 0.1,

checkSizePEvery = 4),
initSize = initSize,
detectionSize = NA,
detectionDrivers = NA,
keepPhylog = TRUE,
model = "McFL",
errorHitWallTime
errorHitMaxTries
finalTime = 5000,

FALSE,
FALSE,

95

c(rexp(ng/2, 10),
-rexp(ng/2, 50)))
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max.wall.time = 10,
onlyCancer = FALSE,
mc.cores = 1,
keepEvery = 1)

For the exponential model we will stop simulations when populations have > 10°
cells (simulations start from 500 cells). For the McFarland model we will use the
detectionProb mechanism (see section 6.3.2 for details); we could have used as
stopping mechanism detectionSize = 2 * initSize (which would be basically
equivalent to reaching cancer, as argued in (McFarland et al., 2013)) but we want to
provide further examples under the detectionProb mechanism. We will start from
1000 cells, not 500 (starting from 1000 we almost always reach cancer in a single
run).

Why not use the detectionProb mechanism with the Exp models? Because it can be
hard to intuitively understand what are reasonable settings for the parameters of the
detectionProb mechanism when used in a population that is growing exponentially,
especially if different genes have very different effects on fitness. Moreover, we are
using fitness specifications that are very different (compare the fitness landscape of
six genes, the pancreas specification, and the fitness specification with 4000 genes
with fitness effects drawn from an exponential distribution —re_4000). In contrast,
the detectionProb mechanism might be simpler to reason about in a population
that is growing under a model of carrying capacity with possibly large periods of
stasis. Let us emphasize that it is not that the detectionProb mechanism does not
make sense with the Exp model; it is simply that the parameters might need finer
adjustment for them to make sense, and in these benchmarks we are dealing with
widely different fitness specifications.

Note also that we specify checkSizePEvery = 4 (instead of the default, which is
20). Why? Because the fitness specifications where fitness effects are drawn from
exponential distributions (re_200 to re_4000 above) include many genes (well, up to
4000) some of them with possibly very large effects. In these conditions, simulations
can run very fast in the sense of “units of time”. If we check exiting conditions every
20 units the population could have increased its size several orders of magnitude in
between checks (this is also discussed in sections 2.1.1 and 6.3.2). You can verify this
by running the script with other settings for checkSizePEvery (and being aware that
large settings might require you to wait for a long time). To ensure that populations
have really grown, we have increased the setting of PDBaseline so that no simulation
can be considered for stopping unless its size is 1.4 times larger than initSize.

In all cases we use keepEvery = 1 and keepPhylog = TRUE (so we store the popula-
tion sizes of all clones every 1 time unit and we keep the complete genealogy of clones).
Finally, we run all models with errorHitWallTime = FALSE and errorHitMaxTries
= FALSE so that we can see results even if stopping conditions are not met.

The results of the benchmarks, using 100 individual simulations, are shown in Table
8.
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Table 8: Benchmarks under some common use cases, set 1.

Elapsed Time, Number of Number of Final Total Total Total

average per Object Size, average Clones, Iterations, Time, Population Population Population

Model Fitness simulation (s) per simulation (MB) median median median Size, median Size, mean Size, max.
Exp pancr 0.002 0.12 3 1,397 697 0 164,222 1,053,299
McFL pancr 0.12 0.56 8 2e+05 5,000 1,037 1,144 1,938
Exp rf6 0.002 0.064 6 783 391 1le+06 594,899 1,309,497
McFL rf6 0.019 0.071 3 23,297 582 1,884 1,975 4,636
Exp rfl12 0.01 0.13 4 1,178 542 0 287,669 1,059,141
McFL rf12 0.14 0.82 18 2e+05 5,000 1,252 1,295 1,695
Exp re_ 200 0.013 0.67 230 1,185 223 1,060,944 859,606 1,536,242
McFL re_ 200 0.018 0.22 47 9,679 240 2,166 2,973 29,301
Exp re_500 0.09 2.7 771 2,732 152 1,068,732 959,026 1,285,522
McFL re_ 500 0.024 0.44 91 7,056 172 2,148 2,578 8,234
Exp re_2000 0.91 29 3,376 7,412 70 1,163,990 1,143,041 1,741,492
McFL re_ 2000 0.031 1.9 186 3,546 80 2,870 3,704 13,248
Exp re_4000 3.3 113 7,088 12,216 52 1,217,568 1,309,185 2,713,200
McFL re_ 4000 0.063 6.5 326 2,731 52 4,592 13,601 729,611



In most cases, simulations run reasonably fast (under 0.1 seconds per individual
simulation) and the returned objects are small. T will only focus on a few cases.

The McFL model with random fitness landscape rf12 and with pancr does not
satisfy the conditions of detectionProb in most cases: its median final time is 5000,
which was the maximum final time specified. This suggests that the fitness landscape
is such that it is unlikely that we will reach population sizes > 1400 (remember
we the setting for PDBaseline) before 5000 time units. There is nothing particular
about using a fitness landscape of 12 genes and other runs in other 12-gene random
fitness landscapes do not show this pattern. However, complex fitness landscapes
might be such that genotypes of high fitness (those that allow reaching a large
population size quickly) are not easily accessible? so reaching them might take a
long time. This does not affect the exponential model in the same way because, well,
because there is exponential growth in that model: any genotype with fitness > 1
will grow exponentially (of course, at possibly very different rates). You might want
to play with the script and modify the call to rfitness (using different values of
reference and c, for instance) to have simpler paths to a maximum or modify the
call to oncoSimulPop (with, say, finalTime to much larger values). Some of these
issues are related to more general questions about fitness landscapes and accessibility
(see section 1.3.2 and references therein).

You could also set onlyCancer = TRUE. This might make sense if you are interested
in only seeing simulations that “reach cancer” (where “reach cancer” means reaching
a state you define as a function of population size or drivers). However, if you are
exploring fitness landscapes, onlyCancer = TRUE might not always be reasonable
as reaching a particular population size, for instance, might just not be possible
under some fitness landscapes (this phenomenon is of course not restricted to random
fitness landscapes —see also section 2.3.3).

As we anticipated above, the detectionProb mechanism has to be used with care:
some of the simulations run in very short “time units”, such as those for the fitness
specifications with 2000 and 4000 genes. Having used a checkSizePEvery = 20
probably would not have made sense.

Finally, it is interesting that in the cases examined here, the two slowest running
simulations are from “Exp”, with fitnesses re_2000 and re_4000 (and the third
slowest is also Exp, under re_500). These are also the cases with the largest
number of clones. Why? In the “Exp” model there is no competition, and fitness
specifications re_2000 and re_4000 have genomes with many genes with positive
fitness contributions. It is thus very easy to obtain, from the wildtype ancestor, a
large number of clones all of which have birth rates > 1 and, thus, clones that are
unlikely to become extinct.

3By easily accessible I mean that there are many, preferably short, paths of non-decreasing
fitness from the wildtype to this genotype. See definitions and discussion in, e.g., Franke et al.
(2011).
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2.2.2 Common use cases, set 2.
We will now rerun the simulations above changing the following:

e finalTime set to 25000.
« onlyCancer set to TRUE.
e The “Exp” models will stop when population size > 10°.

This is in script ‘benchmark_3.R’, under /inst/miscell’, with output in the ‘miscell-
files/vignette bench Rout’ directory of the main OncoSimul repository at https:
//github.com/rdiaz02/OncoSimul. The data are available as data(benchmark_3).
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Table 9: Benchmarks under some common use cases, set 2.

Elapsed Time, Number of Number of Final Total Total Total

average per Object Size, average Clones, Iterations, Time, Population Population Population

Model Fitness simulation (s) per simulation (MB) median median median Size, median Size, mean Size, max.
Exp pancr 0.012 0.32 10 3,480 1,718 le+05 le+05 108,805
McFL pancr 0.41 1.7 14 4e+05 9,955 1,561 1,555 1,772
Exp rf6 0.003 0.058 4 866 430 107,492 109,774 135,257
McFL rf6 0.033 0.12 4 35,216 880 2,003 2,010 3,299
Exp rfl12 0.012 0.098 9 1,138 561 le+05 le+05 112,038
McFL rf12 0.17 0.76 16 le+05 2,511 1,486 1,512 1,732
Exp re_ 200 0.004 0.39 106 723 252 le+05 105,586 122,338
McFL re_ 200 0.026 0.33 61 13,484 335 1,830 2,049 3,702
Exp re_500 0.007 0.61 168 490 117 110,311 112,675 134,860
McFL re_ 500 0.018 0.33 70 5,157 126 2,524 3,455 19,899
Exp re_2000 0.046 5.7 651 1,078 68 106,340 109,081 153,146
McFL re_ 2000 0.029 1.8 186 3,444 80 2,837 4,009 37,863
Exp re_4000 0.1 19 1,140 1,722 51 111,256 113,499 168,958
McFL re_ 4000 0.057 6.7 325 3,081 60 3,955 8,892 265,183



Since we increased the maximum final time and forced runs to “reach cancer” the
McFL run with the pancreas fitness specification takes a bit longer because it also
has to do a larger number of iterations. Interestingly, notice that the median final
time is close to 10000, so the runs in 2.2.1 with maximum final time of 5000 would
have had a hard time finishing with onlyCancer = TRUE.

Forcing simulations to “reach cancer” and just random differences between the
random fitness landscape also affect the McFL run under r£12: final time is below
5000 and the median number of iterations is about half of what was above.

Finally, by stopping the Exp simulations at 10°, simulations with re_2000 and
re_4000 finish now in much shorter times (but they still take longer than their McFL
counterparts) and the number of clones created is much smaller.

2.3 Can we use a large number of genes?

Yes. In fact, in OncoSimulR there is no pre-set limit on genome size. However,
large numbers of genes can lead to unacceptably large returned object sizes and/or
running time. We discuss several examples next that illustrate some of the major
issues to consider. Another example with 50,000 genes is shown in section 6.5.3.

We have seen in 2.1 and 2.2.1 that for the Exp model, benchmark results using
detectionProb require a lot of care and can be misleading. Here, we will fix initial
population sizes (to 500) and all final population sizes will be set to > 10°. In
addition, to avoid the confounding factor of the onlyCancer = TRUE argument, we
will set it to FALSE, so we measure directly the time of individual runs.

2.3.1 Exponential model with 10,000 and 50,000 genes

2.3.1.1 Exponential, 10,000 genes, example 1 We will start with 10000
genes and an exponential model, where we stop when the population grows over 10°
individuals:

ng <- 10000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),
rep(-0.1, ng/2)))

t_e_10000 <- system.time(

e_10000 <- oncoSimulPop(5, u, model = "Exp", mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = TRUE,
mc.cores = 1))

t_e_10000
## user system elapsed
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## 4.368 0.196 4.566

summary (e_10000) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 5017 1180528 415116 143 7547
## 2 3726 1052061 603612 131 5746
## 3 4532 1100721 259510 132 6674
## 4 4150 1283115 829728 99 6646
## 5 4430 1139185 545958 146 6748

print(object.size(e_10000), units = "MB")
## 863.9 Mb

Each simulation takes about 1 second but note that the number of clones for most
simulations is already over 4000 and that the size of the returned object is close to 1
GB (a more detailed explanation of where this 1 GB comes from is deferred until
section 2.3.1.6).

2.3.1.2 Exponential, 10,000 genes, example 2 We can decrease the size
of the returned object if we use the keepEvery = NA argument (this setting was
explained in detail in section 2.1):

t_e_10000b <- system.time(

e_10000b <- oncoSimulPop(5,
u,
model = "Exp",
mu = le-7,
detectionSize = 1lef,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = TRUE,
mc.cores = 1

))

t_e_10000b
## user system elapsed
## 5.484 0.100 5.585

summary (e_10000b) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 2465 1305094 727989 91 6447
## 2 2362 1070225 400329 204 8345
## 3 2530 1121164 436721 135 8697
## 4 2593 1206293 664494 125 8149
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## 5 2655 1186994 327835 191 8572

print (object.size(e_10000b), units = "MB")
## 488.3 Mb

2.3.1.3 Exponential, 50,000 genes, example 1 Let’s use 50,000 genes.
To keep object sizes reasonable we use keepEvery = NA. For now, we also set
mutationPropGrowth = FALSE so that the mutation rate does not become really
large in clones with many mutations but, of course, whether or not this is a
reasonable decision depends on the problem; see also below.

ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),
rep(-0.1, ng/2)))
t_e_50000 <- system.time(
e_50000 <- oncoSimulPop(5,
u,
model = "Exp",
mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1

))

t_e_50000
## user system elapsed
## 44.192 1.684 45.891

summary (e_50000) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 7367 1009949 335455 75.00 18214
## 2 8123 1302324 488469 63.65 17379
## 3 8408 1127261 270690 72.57 21144
## 4 8274 1138513 318152 80.59 20994
## 5 7520 1073131 690814 70.00 18569

print(object.size(e_50000), units = "MB")
## 7598.6 Mb

Of course, simulations now take longer and the size of the returned object is over 7
GB (we are keeping more than 7,000 clones, even if when we prune all those that
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went extinct).

2.3.1.4 Exponential, 50,000 genes, example 2 What if we had not pruned?

ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),
rep(-0.1, ng/2)))
t_e_50000np <- system.time(
e_50000np <- oncoSimulPop(5,

u,
model = "Exp",
mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1

))

t_e_50000np
##  user system elapsed
## 42.316 2.764 45.079

summary (e_50000np) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 13406 1027949 410074 71.97 19469
## 2 12469 1071325 291852 66.00 17834
## 3 11821 1089834 245720 90.00 16711
## 4 14008 1165168 505607 77.61 19675
## 5 14759 1074621 205954 87.68 20597

print(object.size(e_50000np), units = "MB")
## 12748.4 Mb

The main effect is not on execution time but on object size (it has grown by 5 GB).
We are tracking more than 10,000 clones.

2.3.1.5 Exponential, 50,000 genes, example 3 What about the
mutationPropGrowth setting? We will rerun the example in 2.3.1.3 leaving
keepEvery = NA but with the default mutationPropGrowth:

ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),
rep(-0.1, ng/2)))
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t_e_50000c <- system.time(
e_50000c <- oncoSimulPop(5,

t_e_50000c
user system elapsed

##

## 84.228

2.416 86.665

u,

model = "Exp",
mu = le-7,
detectionSize =

leb,

detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,

keepEvery = NA,

mutationPropGrowth = TRUE,

mc.cores = 1

))

summary (e_50000c) [, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter

##
##
##
##
##
##

O WN =

11178
12820
105692
11883
10518

1241970
1307086
1126091
1351114
1101392

344479
203544
161057
148986
253523

print (object.size(e_50000c), units = "MB")
## 10904.9 Mb

As expected (because the mutation rate per unit time is increasing in the fastest
growing clones), we have many more clones, larger objects, and longer times of
execution here: we almost double the time and the size of the object increases by

almost 3 GB.

What about larger population sizes or larger mutation rates? The number of clones
starts growing fast, which means much slower execution times and much larger

returned objects (see also the examples below).

2.3.1.6 Interlude: where is that 1 GB coming from? In section 2.3.1.1 we
have seen an apparently innocuous simulation producing a returned object of almost

1 GB. Where is that coming from? It means that each simulation produced almost
200 MB of output.

Let us look at one simulation in more detail:
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rl <- oncoSimulIndiv(u,
model = "Exp",
mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = TRUE
)

summary (r1) [c(1, 8)]

## NumClones FinalTime

## 1 3887 345

print(object.size(rl), units = "MB")
## 160 Mb

## Size of the two largest objects inside:

sizes <- lapply(rl, function(x) object.size(x)/(1024°2))
sort(unlist(sizes), decreasing = TRUE) [1:2]

## Genotypes pops.by.time

## 148.28 10.26

dim(r1$Genotypes)
## [1] 10000 3887

The above shows the reason: the Genotypes matrix is a 10,000 by 3,887 integer matrix
(with a 0 and 1 indicating not-mutated/mutated for each gene in each genotype)
and in R integers use 4 bytes each. The pops.by.time matrix is 346 by 3,888 (the
1 in 346 = 345 + 1 comes from starting at 0 and going up to the final time, both
included; the 1 in 3888 = 3887 + 1 is from the column of time) double matrix and
doubles use 8 bytes*.

2.3.2 McFarland model with 50,000 genes; the effect of keepEvery

We show an example of McFarland’s model with 50,000 genes in section 6.5.3. We
will show here a few more examples with those many genes but with a different
fitness specification and changing several other settings.

2.3.2.1 McFarland, 50,000 genes, example 1 Let’s start with mutationPropGrowth
= FALSE and keepEvery = NA. Simulations end when population size > 106.

ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

4These matrices do not exist during most of the execution of the C+4 code; they are generated
right before returning from the C++ code.
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rep(-0.1, ng/2)))

t_mc_50000_nmpg <- system.time(
mc_50000_nmpg <- oncoSimulPop(5,

u,
model = "McFL",
mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg

##  user system elapsed

## 30.46 0.54 31.01

summary (mc_50000_nmpg) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 1902 1002528 582752 284.2 31137
## 2 2159 1002679 404858 274.8 36905
## 3 2247 1002722 185678 334.5 42429
## 4 2038 1009606 493574 218.4 32519
## 5 2222 1004661 162628 291.0 38470

print(object.size(mc_50000_nmpg), units = "MB")
## 2057.6 Mb

We are already dealing with 2000 clones.

2.3.2.2 McFarland, 50,000 genes, example 2 Setting keepEvery = 1 (i.e.,
keeping track of clones with an interval of 1):

t_mc_50000_nmpg_k <- system.time(

mc_50000_nmpg_k <- oncoSimulPop(5,
u,
model = "McFL",
mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
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onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1

)

t_mc_50000_nmpg_k
## user system elapsed
## 30.000 1.712 31.714

summary (mc_50000_nmpg_k) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 8779 1000223 136453 306.7 38102
## 2 7442 1006563 428150 345.3 35139
## 3 8710 1003509 224543 252.3 35659
## 4 8554 1002537 103889 273.7 36783
## 5 8233 1003171 263005 301.8 35236

print (object.size(mc_50000_nmpg k), units = "MB")
## 8101.4 Mb

Computing time increases slightly but the major effect is seen on the size of the
returned object, that increases by a factor of about 4x, up to 8 GB, corresponding to
the increase in about 4x in the number of clones being tracked (see details of where
the size of this object comes from in section 2.3.1.6).

2.3.2.3 McFarland, 50,000 genes, example 3 We will set keepEvery = NA
again, but we will now increase detection size by a factor of 3 (so we stop when total
population size becomes > 3 * 109).

ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),
rep(-0.1, ng/2)))

t_mc_50000_nmpg 3e6 <- system.time(

mc_50000_nmpg_3e6 <- oncoSimulPop(5,
u,
model = "McFL",
mu = le-7,
detectionSize = 3e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
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)
t_mc_50000_nmpg_3eb6
## user system elapsed
## 77.240 1.064 78.308

summary (mc_50000_nmpg_3e6) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 5487 3019083 836793 304.5 65121
## 2 4812 3011816 789146 286.3 53087
## 3 4463 3016896 1970957 236.6 45918
## 4 5045 3028142 956026 360.3 63464
## 5 4791 3029720 916692 358.1 55012

print(object.size(mc_50000_nmpg 3e6), units = "MB")
## 4759.3 Mb

Compared with the first run (2.3.2.1) we have approximately doubled computing
time, number of iterations, number of clones, and object size.

2.3.2.4 McFarland, 50,000 genes, example 4 Let us use the same
detectionSize = 1e6 as in the first example (2.3.2.1), but with 5x the mutation
rate:

t_mc_50000_nmpg 5mu <- system.time(

mc_50000_nmpg_5mu <- oncoSimulPop(5,
u,
model = "McFL",
mu = 5e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1

))

t_mc_50000_nmpg_5mu
## user system elapsed
## 167.332 1.796 169.167

summary (mc_50000_nmpg 5mu) [, c(1:3, 8, 9)]

##  NumClones TotalPopSize LargestClone FinalTime NumIter
## 1 7963 1004415 408352 99.03 57548
## 2 8905 1010751 120155 130.30 74738
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## 3 8194 1005465 274661 96.98
## 4 9053 1014049 119943 112.23
## 5 8982 1011817 95047 99.95

print(object.size(mc_50000_nmpg 5mu), units = "MB")
## 8314.4 Mb

The number of clones we are tracking is about 4x the numbe
example (2.3.2.1), and roughly similar to the number of clones

58546
75379
76757

r of clones of the first
of the second example

(2.3.2.2), and size of the returned object is similar to that of the second example. But
computing time has increased by a factor of about 5x and iterations have increased
by a factor of about 2x. Iterations increase because mutation is more frequent; in
addition, at each sampling period each iteration needs to do more work as it needs

to loop over a larger number of clones and this larger numbe

r includes clones that

are not shown here, because they are pruned (they are extinct by the time we exit
the simulation —again, pruning is discussed with further details in 18.2.1).

2.3.2.5 McFarland, 50,000 genes, example 5 Now let’s run the above example

but with keepEvery = 1:

t_mc_50000_nmpg 5mu_k <- system.time(
mc_50000_nmpg 5mu_k <- oncoSimulPop(5,
u,

model = "McFL",

mu = 5e-7,

detectionSize = 1e6,

detectionDr

ivers = NA,

detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,

keepEvery =

1,

mutationPropGrowth = FALSE,

mc.cores =

))
t_mc_50000_nmpg_5mu_k
## user system elapsed

## 174.404 5.068 179.481

summary (mc_50000_nmpg 5mu_k) [, c(1:3, 8, 9)]

##  NumClones TotalPopSize LargestClone FinalTime
## 1 25294 1001597 102766 123.4
## 2 23766 1006679 223010 124.3
## 3 21755 1001379 203638 114.8
## 4 24889 1012103 161003 119.3
## 5 21844 1002927 255388 108.8
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print (object.size(mc_50000_nmpg 5mu_k), units

## 22645.8 Mb

We have already seen these effects before in section 2.3.2.2: using keepEvery = 1
leads to a slight increase in execution time. What is really affected is the size of
the returned object which increases by a factor of about 3x (and is now over 20GB).
That 3x corresponds, of course, to the increase in the number of clones being tracked
(now over 20,000). This, by the way, also allows us to understand the comment
above, where we said that in these two cases (where we have increased mutation
rate) at each iteration we need to do more work as at every update of the population
the algorithm needs to loop over a much larger number of clones (even if many of

those are eventually pruned).

2.3.2.6 McFarland, 50,000 genes, example 6 Finally, we will run the example

= nMBn)

in section 2.3.2.1 with the default of mutationPropGrowth = TRUE:

t_mc_50000 <- system.time(
mc_50000 <- oncoSimulPop(5,

t_mc_ 50000
user system elapsed

##

## 303.352

2.808 306.223

u,

model = "McFL",
mu = le-7,
detectionSize =

1le6,

detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,

keepEvery = NA,

mutationPropGrowth = TRUE,

mc.cores = 1

))

summary (mc_50000) [, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter

##
##
##
##
##
##

O WN R

13928
12243
13880
14104
12428

1010815
1003267
1014131
1012941
1005594

219814
214189
124354

755621
232603

print(object.size(mc_50000), units = "MB")
## 12816.6 Mb

Note the huge increase in computing time (related of course to the huge increase
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in number of iterations) and in the size of the returned object: we have gone from
having to track about 2000 clones to tracking over 12000 clones even when we prune
all clones without descendants.

2.3.3 Examples with s = 0.05

A script with the above runs but using s = 0.05 instead of s = 0.1 is available from
the repository (‘miscell-files/vignette bench Rout/large num_ genes_0.05.Rout’).
I will single out a couple of cases here.

First, we repeat the run shown in section 2.3.2.5:

t_mc_50000_nmpg 5mu_k <- system.time(
mc_50000_nmpg 5mu_k <- oncoSimulPop(2,

u,
model = "McFL",
mu = 5e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg_ 5mu_k

## user system elapsed

## 305.512 5.164 310.711

summary (mc_50000_nmpg 5mu_k) [, c(1:3, 8, 9)]

##  NumClones TotalPopSize LargestClone FinalTime NumIter
## 1 61737 1003273 104460 295.8731 204214
## 2 65072 1000540 133068 296.6243 210231

print(object.size(mc_50000_nmpg 5mu_k), units = "MB")
## 24663.6 Mb

Note we use only two replicates, since those two already lead to a 24 GB returned
object as we are tracking more than 60,000 clones, more than twice those with
s = 0.1. The reason for the difference in number of clones and iterations is of
course the change from s = 0.1 to s = 0.05: under the McFarland model to reach
population sizes of 10° starting from an equilibrium population of 500 we need about
43 mutations (whereas only about 22 are needed if s = 0.1°).

5Given the dependence of death rates on population size in McFarland’s model (section 3.2.1 and
3.2.1.1), if all mutations have the same fitness effects we can calculate the equilibrium population
size (where birth and death rates are equal) for a given number of mutated genes as: K * (e )" —1),
where K is the initial equilibrium size, s the fitness effect of each mutation, and p the number of
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Next, let us rerun 2.3.2.1:

t_mc_50000_nmpg <- system.time(
mc_50000_nmpg <- oncoSimulPop(5,

u,
model = "McFL",
mu = le-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg

## user system elapsed

## 111.236 0.596 111.834

summary (mc_50000_nmpg) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 2646 1000700 217188 734.475 108566
## 2 2581 1001626 209873 806.500 107296
## 3 2903 1001409 125148 841.700 120859
## 4 2310 1000146 473948 906.300 91519
## 5 2704 1001290 448409 838.800 103556

print (object.size(mc_50000_nmpg), units = "MB")
## 2638.3 Mb

Using s = 0.05 leads to a large increase in final time and number of iterations.
However, as we are using the keepEvery = NA setting, the increase in number of
clones tracked and in size of returned object is relatively small.

2.3.4 The different consequences of keepEvery = NA in the Exp and McFL
models

We have seen that keepEvery = NA often leads to much smaller returned objects
when using the McFarland model than when using the Exp model. Why? Because in
the McFarland model there is strong competition and there can be complete clonal
sweeps so that in extreme cases a single clone might be all that is left after some
time. This is not the case in the exponential models.

Of course, the details depend on the difference in fitness effects between different
genotypes (or clones). In particular, we have seen several examples where even with
keepEvery=NA there are a lot of clones in the McFL models. In those examples many

mutated genes.
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clones had identical fitness (the fitness effects of all genes with positive fitness was
the same, and ditto for the genes with negative fitness effects), so no clone ends up
displacing all the others.

2.3.5 Are we keeping the complete history (genealogy) of the clones?

Yes we are if we run with keepPhylog = TRUE, regardless of the setting for keepEvery.
As explained in section 18.2, OncoSimulR prunes clones that never had a population
size larger than zero at any sampling period (so they are not reflected in the
pops.by.time matrix in the output). And when we set keepEvery = NA we are
telling OncoSimulR to discard all sampling periods except the very last one (i.e., the
pops.by.time matrix contains only the clones with 1 or more cells at the end of the
simulation).

keepPhylog operates differently: it records the exact time at which a clone appeared
and the clone that gave rise to it. This information is kept regardless of whether or
not those clones appear in the pops.by.time matrix.

Keeping the complete genealogy might be of limited use if the pops.by.time matrix
only contains the very last period. However, you can use plotClonePhylog and ask
to be shown only clones that exist in the very last period (while of course showing all
of their ancestors, even if those are now extinct —i.e., regardless of their abundance).

For instance, in run 2.3.1.3 we could have looked at the information stored about
the genealogy of clones by doing (we look at the first “individual” of the simulation,
of the five “individuals” we simulated):

head(e_50000[[1]]$other$PhylogDF)
##  parent child time

## 1 3679 0.8402
## 2 4754 1.1815
## 3 20617 1.4543
## 4 15482 2.3064
## 5 4431 3.7130
## 6 41915 4.0628

tail(e_50000[[1]]$other$PhylogDF)

## parent child
## 20672 3679, 20282 3679, 20282, 22359
## 20673 3679, 17922, 22346 3679, 17922, 22346, 35811
## 20674 2142, 3679 2142, 3679, 25838
## 20675 3679, 17922, 19561 3679, 17922, 19561, 43777
## 20676 3679, 15928, 19190, 20282 3679, 15928, 19190, 20282, 49686
## 20677 2142, 3679, 16275 2142, 3679, 16275, 24201

where each row corresponds to one event of appearance of a new clone, the column
labeled “parent” are the mutated genes in the parent, and the column labeled “child”
are the mutated genes in the child.
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And we could plot the genealogical relationships of clones that have a population size
of at least one in the last period (again, while of course showing all of their ancestors,
even if those are now extinct —i.e., regardless of their current numbers) doing:

plotClonePhylog(e_50000[[1]]) ## plot not shown

What is the cost of keep the clone genealogies? In terms of time it is minor. In terms
of space, and as shown in the example above, we can end up storing a data frame with
tends of thousands of rows and three columns (two factors, one float). In the example
above the size of that data frame is approximately 2 MB for a single simulation. This
is much smaller than the pops.by.time or Genotypes matrices, but it can quickly
build up if you routinely launch, say, 1000 simulations via oncoSimulPop. That is
why the default is keepPhylog = FALSE as this information is not needed as often
as that in the other two matrices (pops.by.time and Genotypes).

2.4 Population sizes > 10"

We have already seen examples where population sizes reach 10® to 10'°, as in Tables
3, 5, 7. What about even larger population sizes?

The C++ code will unconditionally alert if population sizes exceed 4 * 10'° as
in those cases loosing precision (as we are using doubles) would be unavoidable,
and we would also run into problems with the generation of binomial random
variates (code that illustrates and discusses this problem is available in file “example-
binom-problems.cpp”, in directory “/inst/miscell”). However, well before we reach
4 % 10'° we loose precision from other sources. One of the most noticeable ones is
that when we reach population sizes around 10! the C++ code will often alert
us by throwing exceptions with the message Recoverable exception ti set to
DBL_MIN. Rerunning. I throw this exception because t;, the random variable for
time to next mutation, is less than DBL_MIN, the minimum representable floating-
point number. This happens because, unless we use really tiny mutation rates, the
time to a mutation starts getting closer to zero as population sizes grow very large.
It might be possible to ameliorate these problems somewhat by using long doubles
(instead of doubles) or special purpose libraries that provide more precision. However,
this would make it harder to run the same code in different operating systems and
would likely decrease execution speed on the rest of the common scenarios for which
OncoSimulR has been designed.

The following code shows some examples where we use population sizes of 10! or
larger. Since we do not want simulations in the exponential model to end because of
extinction, I use a fitness specification where all genes have a positive fitness effect
and we start all simulations from a large population (to make it unlikely that the
population will become extinct before cells mutate and start increasing in numbers).
We set the maximum running time to 10 minutes. We keep the genealogy of the
clones and use keepEvery = 1.

ng <- 50
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng)))
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t_mc_k _50_lell <- system.time(

mc_k 50 _1ell <- oncoSimulPop(5,
u,
model = "McFL",
mu = le-7,
detectionSize = lell,
initSize = 1leb,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = FALSE,
keepEvery = 1,
finalTime 5000,
mc.cores = 1,
max.wall.time = 600

))

## Recoverable exception ti set to DBL_MIN. Rerunning.
## Recoverable exception ti set to DBL_MIN. Rerunning.

t_mc_k_50_1lell
## user system elapsed
## 613.612 0.040 613.664

summary (mc_k_50_1ell1) [, c(1:3, 8, 9)]
##  NumClones TotalPopSize LargestClone FinalTime NumIter

## 1 5491 100328847809 44397848771 1019.950 942764
## 2 3194 100048090441 34834178374 789.675 888819
## 3 5745 100054219162 24412502660  927.950 929231
## 4 4017 101641197799 60932177160  750.725 480938
## 5 5393 100168156804 41659212367  846.250 898245

## print(object.size(mc_k_50_1ell), units = "MB")
## 177.8 Mb

We get to 10'!. But notice the exception with the warning about ¢;. Notice also that
this takes a long time and we run a very large number of iterations (getting close to
one million in some cases).

Now the exponential model with detectionSize = lell:

t_exp_k_50_lell <- system.time(
exp_k_50_1ell <- oncoSimulPop(5,
u,
model = "Exp",
mu = le-7,
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detectionSize =
initSize = 1e5,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = FALSE,
keepEvery = 1,

finalTime = 5000,

mc.cores = 1,

max.wall.time = 600,
errorHitWallTime = FALSE,
errorHitMaxTries = FALSE

))

lell,

##
##
##
##
##
##
##
##
##
##
##
##
##

Recoverable
Hitted wall
Recoverable
Recoverable
Recoverable
Hitted wall
Recoverable
Recoverable
Recoverable
Recoverable
Recoverable
Hitted wall
Hitted wall

exception ti set
time. Exiting.
exception ti set
exception ti set
exception ti set
time. Exiting.
exception ti set
exception ti set
exception ti set
exception ti set
exception ti set
time. Exiting.
time. Exiting.

to DBL_MIN. Rerunning.
to
to
to

DBL_MIN.
DBL_MIN.
DBL_MIN.

Rerunning.
Rerunning.
Rerunning.

to
to
to
to
to

DBL_MIN.
DBL_MIN.
DBL_MIN.
DBL_MIN.
DBL_MIN.

Rerunning.
Rerunning.
Rerunning.
Rerunning.
Rerunning.

t_exp_k_50_1lell

## user system elapsed

## 2959.068 0.128 2959.556
try(summary(exp_k 50 _1el11) [, c(1:3, 8, 9)])

##  NumClones TotalPopSize LargestClone FinalTime NumIter
## 1 6078 65172752616 16529682757 235.7590 1883438
## 2 5370 106476643712 24662446729 232.0000 2516675
## 3 2711 21911284363 17945303353 224.8608 543698
## 4 2838 13241462284 2944300245 216.8091 372298
## 5 7289 76166784312 10941729810 240.0217 1999489

print(object.size(exp_k_50_1lell), units = "MB")

## 53.5 Mb

Note that we almost reached max.wall.time (600 * 5 = 3000). What if we wanted
to go up to 1027 We would not be able to do it in 10 minutes. We could set
max.wall.time to a value larger than 600 to allow us to reach larger sizes but
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then we would be waiting for a possibly unacceptable time for simulations to finish.
Moreover, this would eventually fail as simulations would keep hitting the ¢; exception
without ever being able to complete. Finally, even if we were very patient, hitting
that ¢; exception should make us worry about possible biases in the samples.

2.5

A summary of some determinants of running time and
space consumption

To summarize this section, we have seen:

Both McFL and Exp can be run in short times over a range of sizes for
the detectionProb and detectionSize mechanisms using a complex fitness
specification with moderate numbers of genes. These are the typical or common
use cases of OncoSimulR.

The keepEvery argument can have a large effect on time in the McFL models
and specially on object sizes. If only the end result of the simulation is to be
used, you should set keepEvery = NA.

The distribution of fitness effects and the fitness landscape can have large
effects on running times. Sometimes these are intuitive and simple to reason
about, sometimes they are not as they interact with other factors (e.g., stop-
ping mechanism, numbers of clones, etc). In general, there can be complex
interactions between different settings, from mutation rate to fitness effects to
initial size. As usual, test before launching a massive simulation.

Simulations start to slow down and lead to a very large object size when we keep
track of around 6000 to 10000 clones. Anything that leads to these patterns
will slow down the simulations.

OncoSimulR needs to keep track of genotypes (or clones), not just numbers
of drivers and passengers, because it allows you to use complex fitness and
mutation specifications that depend on specific genotypes. The keepEvery
= NA is an approach to store only the minimal information needed, but it is
unavoidable that during the simulations we might be forced to deal with many
thousands of different clones.
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3 Speciftying fitness effects

OncoSimulR uses a standard continuous time model, where individual cells divide,
die, and mutate with rates that can depend on genotype and population size; over
time the abundance of the different genotypes changes by the action of selection
(due to differences in net growth rates among genotypes), drift, and mutation. As a
result of a mutation in a pre-existing clone new clones arise, and the birth rate of a
newly arisen clone is determined at the time of its emergence as a function of its
genotype. Simulations can use an use exponential growth model or a model with
carrying capacity that follows McFarland et al. (2013). For the exponential growth
model, the death rate is fixed at one whereas in the model with carrying capacity
death rate increases with population size. In both cases, therefore, fitness differences
among genotypes in a given population at a given time are due to differences in the
mapping between genotype and birth rate. There is second exponential model (called
“Bozic”) where birth rate is fixed at one, and genotype determines death rate instead
of birth rate (see details in 3.2). So when we discuss specifying fitness effects or the
effects of genes on fitness, we are actually referring to specifying effects on birth (or
death) rates, which then translate into differences in fitness (since the other rate,
death or birth, is either fixed, as in the Exp and Bozic models, or depends on the
population size). This is also shown in Table 1, in the rows for “Fitness components”,
under “Evolutionary Features”.

In the case of frequency-dependent fitness simulations (see section 10), the fitness
effects must be reevaluated frequently so that birth rate, death rate, or both, de-
pending the model used, are updated. To do this it is necessary to use a short step
to reevaluate fitness; this is done using a small value for sampleEvery parameter
in oncoSimulindv (see 18.8 for more details), as is the case when using McFarland
model.

Incidentally, notice that with OncoSimulR we do not directly specify fitness itself
(even if, for the sake of simplicity, we often refer to fitness in the documentation) as
fitness is, arguably, a derived quantity (Doebeli et al., 2017). Rather, we specify how
birth and/or death rates, which are the actual mechanistic drivers of evolutionary
dynamics, are related to genotypes (or to the frequencies of the different genotypes).

3.1 Introduction to the specification of fitness effects
With OncoSimulR you can specify different types of effects on fitness:

» A special type of epistatic effect that is particularly amenable to be represented
as a graph (a DAG). In this graph having, say, “B” be a child of “A” means that
a mutation in B can only accumulate if a mutation in A is already present. This
is what OT (Desper et al., 1999; Szabo & Boucher, 2008), CBN (Beerenwinkel,
Eriksson, et al., 2007; Gerstung et al., 2009; Gerstung, Eriksson, et al., 2011),
progression networks (Farahani & Lagergren, 2013), and other similar models
(Korsunsky et al., 2014) generally mean. Details are provided in section 3.4.
Note that this is not an order effect (discussed below): the fitness of a genotype
from this DAGs is a function of whether or not the restrictions in the graph
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are satisfied, not the historical sequence of how they were satisfied.

o Effects where the order in which mutations are acquired matters, as illustrated
in section 3.6. There is, in fact, empirical evidence of these effects (Ortmann et
al., 2015). For instance, the fitness of genotype “A, B” would differ depending
on whether A or B was acquired first (or, as in the actual example in (Ortmann
et al., 2015), the fitness of the mutant with JAK2 and TET2 mutated will
depend on which of the genes was mutated first).

o General epistatic effects (e.g., section 3.7), including synthetic viability (e.g.,
section 3.9) and synthetic lethality /mortality (e.g., section 3.10).

+ Genes that have independent effects on fitness (section 3.3).

o Modules (see section 3.5) allow you to specify any of the above effects (except
those for genes without interactions, as it would not make sense there) in terms
of modules (sets of genes), not individual genes. We will introduce them right
after 3.4, and we will continue using them thereafter.

A guiding design principle of OncoSimulR is to try to make the specification of those
effects as simple as possible but also as flexible as possible. Thus, there are two main
ways of specifying fitness effects:

o Combining different types of effects in a single specification. For instance, you
can combine epistasis with order effects with no interaction genes with modules.
What you would do here is specify the effects that different mutations (or their
combinations) have on fitness (the fitness effects) and then have OncoSimulR
take care of combining them as if each of these were lego pieces. We will refer
to this as the lego system of fitness effects. (As explained above, I find
this an intuitive and very graphical analogy, which I have copied from Hothorn
et al. (2006) and Hothorn et al. (2008)).

o Explicitly passing to OncoSimulR a mapping of genotypes to fitness. Here
you specify the fitness of each genotype. We will refer to this as the explicit
mapping of genotypes to fitness. This includes frequency-dependent fitness
(section 10).

Both approaches have advantages and disadvantages. Here I emphasize some relevant
differences.

o With the lego system you can specify huge genomes with an enormous variety of
interactions, since the possible genotypes are not constructed in advance. You
would not be able to do this with the explicit mapping of genotypes to fitness
if you wanted to, say, construct that mapping for a modest genotype of 500
genes (you'd have more genotypes than particles in the observable Universe).

o For many models/data you often intuitively start with the fitness of the
genotypes, not the fitness consequences of the different mutations. In these
cases, you'd need to do the math to specify the terms you want if you used the
lego system so you’ll probably use the specification with the direct mapping
genotype — fitness.
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o Likewise, sometimes you already have a moderate size genotype — fitness
mapping and you certainly do not want to do the math by hand: here the lego
system would be painful to use.

e But sometimes we do think in terms of “the effects on fitness of such and such
mutations are” and that immediately calls for the lego system, where you focus
on the effects, and let OncoSimulR take care of doing the math of combining.

o If you want to use order effects, you must use the lego system (at least for
now).

o If you want to specify modules, you must use the lego system (the explicit
mapping of genotypes is, by its very nature, ill-suited for this).

o The lego system might help you see what your model really means: in many
cases, you can obtain fairly succinct specifications of complex fitness models
with just a few terms. Similarly, depending on what your emphasis is, you can
often specify the same fitness landscape in several different ways.

Regardless of the route, you need to get that information into OncoSimulR’s functions.
The main function we will use is allFitnessEffects: this is the function in charge
of reading the fitness specifications. We also need to discuss how, what, and where
you have to pass to allFitnessEffects.

3.1.1 Explicit mapping of genotypes to fitness

Conceptually, the simplest way to specify fitness is to specify the mapping of all
genotypes to fitness explicitly. An example will make this clear. Let’s suppose you
have a simple two-gene scenario, so a total of four genotypes, and you have a data
frame with genotypes and fitness, where genoytpes are specified as character vectors,
with mutated genes separated by commas:

m4 <- data.frame(G = c("WT", "A", "B", "A, B"), F =c(1, 2, 3, 4))

Now, let’s give that to the allFitnessEffects function:

fem4 <- allFitnessEffects(genotFitness = m4)
## Column names of object not Genotype and Birth Renaming them assuming that is w.

(The message is just telling you what the program guessed you wanted.)

That’s it. You can try to plot that fitnessEffects object

try(plot(femd))
## Error in plot.fitnessEffects(fem4)
## This fitnessEffects object can not be ploted this way. It is probably one wi

In this case, you probably want to plot the fitness landscape.
plotFitnessLandscape(evalAllGenotypes (fem4))

81



4.0-
3.5-
3.0- Local _
max/min
. Peak
. Sink
S
5@ 2.5-
Change
— Gain
Loss
2.0- Neutral
15-
1.0-

You can also check what OncoSimulR thinks the fitnesses are, with the
evalAllGenotypes function that we will use repeatedly below (of course, here we
should see the same fitnesses we entered):

evalAllGenotypes(fem4, addwt = TRUE)
##  Genotype Birth

## 1 WT 1
## 2 A 2
## 3 B 3
## 4 A, B 4

And you can plot the fitness landscape:
plotFitnessLandscape(evalAllGenotypes (fem4))
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To specify the mapping you can also use a matrix (or data frame) with g+ 1 columns;
each of the first g columns contains a 1 or a 0 indicating that the gene of that column
is mutated or not. Column ¢ + 1 contains the fitness values. And you do not even
need to specify all the genotypes: the missing genotypes are assigned a fitness 0
—except for the WT genotype which, if missing, is assigned a fitness of 1:

m6 <- cbind(c(1l, 1), c(1, 0), c(2, 3))

fem6 <- allFitnessEffects(genotFitness = m6)

## No column names: assigning gene names from LETTERS

## Warning in to_genotFitness_std(genotFitness,

## frequencyDependentBirth = FALSE, : No wildtype in the fitness
## landscape!!! Adding it with birth 1.

evalAllGenotypes(fem6, addwt = TRUE)

##  Genotype Birth

## 1 WT 1
## 2 A 3
## 3 B 0]
## 4 A, B 2

## plot(fem6)

plotFitnessLandscape(evalAllGenotypes (fem6))
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This way of giving a fitness specification to OncoSimulR might be ideal if you directly
generate random mappings of genotypes to fitness (or random fitness landscapes),
as we will do in section 9. Specially when the fitness landscape contains many non-
viable genotypes (which are considered those with fitness —birth rate— < le — 9)
this can result in considerable savings as we only need to check the fitness of the
viable genotypes in a table (a C+4 map). Note, however, that using the Bozic
model with the fitness landscape specification is not tested. In addition, for speed,
missing genotypes from the fitness landscape specification are taken to be non-viable
genotypes (beware!! this is a breaking change relative to versions < 2.9.1)°.

In the case of frequency-dependent fitness situations, the only way to specify fitness
effects is using genoFitnes as we have shown before, but now you need to set
frequencyDependentFitness = TRUE in allFitnessEffects. The fundamental

SNote for curious readers: it used to be the case that we converted the table of fitness of
genotypes to a fitness specification with all possible epistatic interactions; you can take a look at
the test file test.genot_fitness_to_epistasis.R that uses the fem6 object. We no longer do
that but instead pass directly the fitness landscape.
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difference is the Fitness column in genoFitnes. Now this column must be a character
vector and each element (character also) is a function whose variables are the
relative frequencies of the clones in the population. You must specify the variables
like f , for frequency of wild type, f 1 or f A for frequency of mutant A or
position 1, f 1 2 orf A B for double mutant, and so on. Mathematical operations
and symbols allowed are described in the documentation of C++ library ExprTk
(http://www.partow.net/programming/exprtk/). ExprTk is the library used
to parse and evaluate the fitness equations. The numeric vector spPopSizes is
only necesary to evaluate genotypes through evalGenotype or evalAllGenotypes
functions because population sizes are needed to calculate the clone’s frequencies.

r <- data.frame(Genotype = c("WT", "A", "B", "A, B"),
Fitness = c("10 * f ",
"10 * £ 1",
"0 * £ 2",
"200 % (f 1 + £ 2) + 50 % £.1 2"))

afe <- allFitnessEffects(genotFitness = r,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

## Warning in allFitnessEffects(genotFitness = r,

## frequencyDependentFitness = TRUE, : v2 functionality detected.

## Adapting to v3 functionality.

plotFitnessLandscape(evalAllGenotypes(afe,
spPopSizes = c(WT = 2500, A = 2000,
B = 5500, "A, B" = 700)))
## Using old version of fitnessEffects. Transforming fitnessEffects
## to last version.
## Using old version of fitnessEffects. Transforming fitnessEffects
## to last version.
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The above example is simple enough in terms of genes and genotypes that using £ 1
is OK. But it will be better, as examples get more complex, to use:

r <- data.frame(Genotype = c("WT", "A", "B", "A, B"),
Fitness = c("10 * f ",
"10 % £ A",
"50 % £ B,
"200 * (f A + £ B) + 50 * £ A B"))

which makes explicit what depends on what (i.e., you do not need to keep in mind the
mapping of letters to numbers). In other words, we write f_genotype expressed
as combination of gene names, with the gene names we are actually using. And
those f_something other, will match the genotypes given in Genotype (there will
a something, other genotype).

3.1.2 How to specify fitness effects with the lego system

An alternative general approach followed in many genetic simulators is to specify
how particular combinations of alleles modify the wildtype genotype or the genotype
that contains the individual effects of the interacting genes (e.g., see equation 1 in
the supplementary material for FFPopSim (Zanini & Neher, 2012)). For example, if
we specify that a mutation in “A” contributes 0.04, a mutation in “B” contributes
0.03, and the double mutation “A:B” contributes 0.1, that means that the fitness of
the “A, B” genotype (the genotype with A and B mutated) is that of the wildtype
(1, by default), plus (actually, times —see section 3.2— but plus on the log scale)
the effects of having A mutated, plus (times) the effects of having B mutated, plus
(times) the effects of “A:B” both being mutated.
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We will see below that with the “lego system” it is possible to do something very
similar to the explicit mapping of section 3.1.1. But this will sometimes require a
more cumbersome notation (and sometimes also will require your doing some math).
We will see examples in sections 3.7.1, 3.7.2 and 3.7.3 or the example in 5.4.2. But
then, if we can be explicit about (at least some of) the mappings genotype — fitness,
how are these procedures different? When you use the “lego system” you can combine
both a partial explicit mapping of genotypes to fitness with arbitrary fitness effects
of other genes/modules. In other words, with the “lego system” OncoSimulR makes
it simple to be explicit about the mapping of specific genotypes, while also using
the “how this specific effects modifies previous effects” logic, leading to a flexible
specification. This also means that in many cases the same fitness effects can be
specified in several different ways.

Most of the rest of this section is devoted to explaining how to combine those pieces.
Before that, however, we need to discuss the fitness model we use.

3.2 Numeric values of fitness effects

We evaluate fitness using the usual (Beerenwinkel, Eriksson, et al., 2007; Datta et al.,
2013; Gillespie, 1993; Zanini & Neher, 2012) multiplicative model: fitness is [T(1 + s;)
where s; is the fitness effect of gene (or gene interaction) 7. In all models except
Bozic, this fitness refers to the growth rate (the death rate being fixed to 17). The
original model of McFarland et al. (2013) has a slightly different parameterization,
but you can go easily from one to the other (see section 3.2.1).

For the Bozic model (Bozic et al., 2010), however, the birth rate is set to 1, and the
death rate then becomes [](1 — s;).

3.2.1 McFarland parameterization

In the original model of McFarland et al. (2013), the effects of drivers contribute

to the numerator of the birth rate, and those of the (deleterious) passengers to the
(1+s)4
(1+sp)P
and passengers in a genotype, and here the fitness effects of all drivers is the same

(s) and that of all passengers the same too (s,). Note that, as written above, and as
explicitly said in McFarland et al. (2013) (see p. 2911) and McFarland (2014) (see
p. 9), “(...) s, is the fitness disadvantage conferred by a passenger”. In other words,
the larger the s, the more deleterious the passenger.

denominator as: , where d and p are, respectively, the total number of drivers

This is obvious, but I make it explicit because in our parameterization a positive s

means fitness advantage, whereas fitness disadvantages are associated with negative
(1+s)¢
(1—sp)P
“positive means fitness advantage and negative means fitness disadvantage”.

then we are